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Preface

This book was started about 6 years ago and is only now complete, mainly due to 
work and time pressures. It has been quite a challenge as new concepts were devel-
oped over the years, others were refined, and yet others became obsolete—thereby 
requiring regular upgrading of the information and rewriting of certain material. 
Over this period, other books on filters have been written and published as well, 
perhaps leaving the reader wondering about what this book adds to the literature. 
As filter designers, we realized that we were constantly searching through the lit-
erature for the specific information we needed. No book on its own covered all 
the required coupling equations, power-handling details, and so on, for a specific 
transmission line configuration. Hence we decided to put together this edition with 
all the practical information any designer would need for his or her configuration. 
This text presents the design of filters in a continuous and comprehensive manner, 
thereby eliminating the need for the student or filter designer to extract the relevant 
information from published papers or other texts. In comparison to another recent 
book on filter design, this book is concise, does not try to cover topics that are of 
academic interest only or present obsolete ideas that have been published but were 
impractical and never implemented.

Unlike most other microwave components, microwave filters can be designed 
and manufactured with predictable performance. Therefore, it is cost effective to 
design the microwave components in a circuit with broadband characteristics and 
use filters to achieve the system performance desired at a lower cost than would 
otherwise be possible.

Filters can be fabricated from lumped elements (inductors, capacitors, and re-
sistors) or from distributed elements, or both. Basically, there are four types of 
filters: low-pass, band-pass, band-stop, and high-pass. However, once the theory 
and practical implementation of a low-pass filter are clearly understood, this infor-
mation can be used to advantage in designing and fabricating the high-pass, band-
pass, or band-stop version.

This book is therefore organized to provide the student, engineer, or designer 
with the fundamentals of microwave theory, microwave transmission lines, and 
low-pass filter design, which is then expanded and forms the basis or building 
blocks for the other filter types in later chapters. Thus, Chapter 1 presents some ba-
sic information on impedance-matching networks, concept of complex frequency, 
useful definitions that are essential to understanding the rest of the text, and realiz-
able driving-point functions.



In Chapter 2, the critical aspects of microwave network theory, admittance 
and impedance matrices, scattering matrices, and ABCD matrix are discussed. This 
chapter contains information that is available in most microwave engineering texts 
and known by most microwave engineers, but is repeated here for completeness in 
an abbreviated form to provide the reader a ready reference instead of having to 
search for the material elsewhere.

All filters, unless they are lumped element designs, are built of transmission lines 
of some sort. They may be fabricated in coaxial line form, waveguides, or planar 
transmission line form. Typical forms of planar transmission lines are microstrip 
lines, striplines, and variations of these lines. While waveguides and coaxial line 
structures are more common where real estate or power requirement so dictate or 
permit, filters using planar transmission lines are more commonly found in most 
microwave integrated circuits, where size is a very limiting factor.  In addition to 
having a clear understanding of the design and characteristics of transmission lines, 
all filters require a clear comprehension of coupling mechanisms involving these 
transmission lines. This alone adds considerable complexity as a simple stripline 
can be edge-coupled, broadside-coupled, balanced or unbalanced, shielded or un-
shielded, and so forth. In Chapter 3, all required information for understanding the 
nature of these transmission lines is clearly presented, as this information forms the 
building blocks for the design of filters that follows in the rest of the text.

After Chapter 3, the material on low-pass filter design contained in Chapter 
4 is perhaps the most important part of the book. As explained in the text and 
mentioned above, this is because the low-pass filter design can be used to build all 
other types of filters. This chapter includes the most commonly used methods of 
low-pass filter design, including the insertion loss method, the Belevitch matrix, 
transfer function synthesis, and impedance inverter concepts while explaining and 
systematically demonstrating the design process. The design procedure is clearly 
enunciated through some examples.

With the background developed in Chapter 4 on low-pass filters, and using the 
theory of distributed network synthesis explained in the beginning of Chapter 5, 
one can easily extend this theory to the design of high-pass filters using a low-pass 
to high-pass transformation. This is covered in the chapter, together with Levy’s 
method for planar high-pass filter design and the design of high-pass waveguide 
filters. The technique can be further extended and applied to band-stop filters (also 
called band rejects or notch filters) and this forms the topic of discussion for the 
balance of the chapter.

Chapter 6 covers the design of band-pass filters in its many forms. These are 
perhaps the most commonly used types of filters and the reader is probably familiar 
with most of the names, such as edge-coupled band-pass filters, hairpin line filters, 
interdigital filters, combline filters, and so forth. The design of the most common 
waveguide types of these filters is also discussed, including evanescent-mode band-
pass filters and cross-coupled filters. Dielectric resonator filters are discussed with 
design examples, as these filters have the advantage of compact size with very nar-
row bandwidths. The reader and designer are led through a step-by-step procedure 
for designing the different filter types and design examples are presented to bring 
about a clear understanding.

Finally, in Chapter 7 we discuss the design of multiplexers as these are common-
ly used in microwave systems and are essentially an extension of filter applications. 



The complexities involved in the design of multiplexers are discussed, together with 
the most commonly implemented configurations. These include common junction 
with susceptance annulling networks, cascaded directional filters, channel filters 
separated by circulators, and manifold multiplexers. These configurations and 
their designs are covered in the final sections.

Throughout the text, computer programs and computer-assisted design soft-
ware available and suitable for specific filter design applications are mentioned. As 
this is an all-inclusive text, designers can easily develop their own computer codes 
for their requirements from the material here without having to use other sources.

We wish to thank our families for their patience over the years and acknowl-
edge the support of Mr. Douglas F. Carlberg and Mr. Archie Wohlfahrt of M2G 
Global Inc., Kevin Asplen, Ken Sears of K & L Microwave, Mrs. Suzanne Wright, 
Dr. Rudolf Cheung, Chris Holman, Hong Chau, Maurice Aghion and Sandeep 
Palreddy of Microwave Engineering, Dr. Paul Smith of Microcommunications Inc., 
and Prof. Fritz Ardnt and Dr. Jill Arndt of Microwave Innovation Group (Wasp-
Net), and Arun Ray for their help and encouragement during this writing. Finally, 
we wish to acknowledge those who helped with the typing and artwork and grant-
ed permissions to use their intellectual property.
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Introduction

1.1  Applications of RF and Microwave Filters

A filter in an electrical network is a two-port (input port and output port) device 
that allows signals of a certain desired band of frequencies to pass through it with 
very little attenuation or loss, while stopping the passage of other undesired bands 
of frequencies with very high attenuation or rejection. At microwave frequencies, 
filters are extensively used in communication and radar systems and instrumenta-
tion. In addition, the study of theory and realization of microwave filters is very 
important because any passive microwave network can be decomposed into a com-
bination of several filterlike networks for ease of analysis and design. In this book 
we will describe not only how to realize microwave filters but also several other 
passive components that can be analyzed and designed using filter theory and real-
ization methods. Figure 1.1 shows a typical block diagram of a simplified satellite 
downlink using several microwave filters [1].

In general, filters are of four types: low-pass, high-pass, band-pass, and band-
stop. Figure 1.2 shows the ideal and theoretical characteristics of a high-pass filter, 
where A is the attenuation in decibels (dB) and f is the frequency in hertz (Hz) [2]. 

In Figure 1.2, fc is the cutoff frequency of the filter, As the stop-band attenua-
tion, and the filter offers 0-dB attenuation in the passband. In addition, there is no 
frequency band separating the passband and the stopband. However, it is impos-
sible to physically realize such a filter. According to the Paley-Wiener causality 
criterion [3], the transfer function H(jω) of a network must satisfy the following 
equations

	

ω
ω

ω

∞

−∞

< ∞
+∫ 2

log ( )

1

H j
d

	 (1.1)

and

	
ω ω

∞

−∞

< ∞∫
2

( )H j d
	 (1.2)
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where |H(jω)| is the modulus of the frequency domain transfer function of the net-
work and ω is the radian frequency. The physical implication of the Paley-Wiener 
criterion is that the amplitude function cannot fall off to zero faster than an expo-
nential order. The ideal high-pass response in Figure 1.2 cannot be realized because 
the transition from passband to stopband follows an abrupt step function violating 
the Paley-Wiener criterion. Therefore, in reality, every filter has a transition band 
between the passband and the stopband. Figure 1.3 shows a few realizable shapes 
of frequency responses for different types of filters.

More than one filter can be connected through a common junction network 
to form what is known as a multiplexer. A multiplexer is used when one needs 
to separate or combine signals belonging to different frequency bands. Figure 1.4 
shows the schematic of a typical two-channel multiplexer network. It consists of 
two band-pass filters. Such a network is known as a diplexer. However, there can 
be more than two channel filters in a multiplexer. As a result, we get networks 
known as triplexers and quadruplexers.

The diplexer shown in Figure 1.4 consists of two bandpass filters connected 
at the input through a common junction network. Channel 1 covers the frequency 

Figure 1.1  Block diagram of a simplified satellite downlink. (From [1].)

Figure 1.2  Characteristic of an ideal high-pass filter. (From [2].)
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band from 2 to 4 GHz and channel 2 covers the frequency band from 3 to 5 GHz. 
There is a 1-GHz guardband between the two channels. The purpose of the com-
mon junction is to reduce the power reflected at the input port of the diplexer to a 
negligibly small value over the frequency bands of the channel filters. In addition, 
the constituent filters are designed using special measures to match the impedance 
of the common junction network.

Figure 1.3   (a) Realizable low-pass filter response, (b) realizable high-pass filter response, (c) realiz-
able band-pass filter response, and (d) realizable bandstop filter response. (From [4].)
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If we reverse the directions of the arrows in Figure 1.4, we obtain a channel 
combiner. A channel combiner serves the opposite function of a multiplexer. It 
superimposes the signals coming out of different channel filters on a single output 
line. The matching network, together with the specially designed filters, assure 
impedance matching at all ports and minimum signal loss due to unwanted reflec-
tions at the common junction. Besides the common junction approach, the chan-
nel filters can also be connected to each other using another approach known as 
the manifold method. The design and analysis of multiplexers are treated in much 
greater detail in Chapter 7.

1.2  Impedance Matching Networks

An impedance matching network is the most widely used circuit component in 
any communication system. Impedance matching ensures optimum power transfer 
efficiency, good noise performance, and optimum gain. All impedance matching 
networks can be categorized under two groups, impedance transformers and filters. 
The purpose of a matching network is to minimize the undesired power reflection 
at a port over a desired passband of a system or a device.

The objective of an impedance matching network design is to obtain the mini-
mum reflection over the widest bandwidth, unless a narrowband or single fre-
quency matching is required. However, in network design, fulfilling that objective 
is always a challenge because according to Fano [5] and Bode [6], low reflection 
and wide bandwidth are always a trade-off when a matching network is required 
to match a load with a reactive part, as shown in Figure 1.5.

Bode’s [5] gain-bandwidth integral restriction is given by

	
π

ω
∞

≤
Γ∫

0

1
ln d

RC
	 (1.3)

where ω(=2πf ) is the angular frequency, and Γ is the input reflection coefficient of 
the matching networks. Since for perfect matching, the designer looks for zero re-
flection or Γ=0, 1/Γ should become infinite. However, the above equation indicates 

Figure 1.4  Block diagram of a diplexer.
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that the integral always remains bounded by the values of R and C. If the reflection 
coefficient is a constant over a desired frequency band ranging from ω1 to ω2 and 
has the value ρ and unity at any other frequency, then (1.3) gives

	
π

ω ω ω ρ
∞

≤ −
Γ∫ 1 2

0

1
ln ( )lnd

RC
	  (1.4) 

It is obvious from (1.4) that for large RC, wideband matching becomes a chal-
lenging task. Almost all matching networks behave as bandpass filters. Ideally it is 
desired that the reflection coefficient within the desired passband should be zero 
and that it should be unity at any other frequency. However, this is a brick-wall 
type response that, according to the Paley-Weiner criterion, cannot be physically 
realized. A physically realizable matching network should have a maximum but low 
reflection coefficient ρm in the passband and unity in the stopband while there must 
be a transition band between them. The transition band can be made narrow by the 
use of a larger number of matching sections, theoretically reducing it to zero with 
an infinite number of sections. This topic is treated in greater depth in Chapter 4.

1.3   The Concept of Complex Frequency

The generalized sinusoidal voltage can be written as 

	 s ω ϕ−= +( ) cos( )tv t V e t 	 (1.5)

Then v(t) is said to have a complex frequency, where

	 s ω= +s j 	 (1.6)

In the above equations, t is the time in seconds, ω is the angular frequency in radians 
per second, and s is the attenuation constant in nepers per unit length. Also ϕ is the 
initial phase of the voltage at t = 0. Figure 1.6(a) shows the dependence of v(t) on t 
for V= 38 volts, σ = –0.05, ω = 0.2 rad/sec, and ϕ = π/4 radians. It is a damped si-
nusoid. Figure 1.6(b) shows the voltage waveform when σ = 0.05 and Figure 1.6(c) 
shows the voltage waveform when σ = 0.00.

We can also write (1.5) as

	 =( ) Re{ }stv t Ve 	  (1.7)

Figure 1.5  Parallel RC circuit.
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and 

	 Φ= jV V e 	  (1.8)

Once again, V is a complex quantity. Therefore, the real part σ of the complex 
frequency describes the decay or growth of the amplitude of the voltage and the 
imaginary part ω describes the angular frequency of the sinusoidal voltage in the 
usual sense.

When ϕ = ω = 0, the voltage has an exponential time variation, as shown in 
Figure 1.6(d).

1.4  Useful Definitions

This book deals primarily with linear time-invariant passive networks. Such net-
works have the following properties.

The principle of superposition holds for a linear time-invariant network. By 
that principle, if, for a given network v1o(t) and v2o(t) are the voltage outputs 

Figure 1.6  (a) Damped sinusoidal voltage with (a) damping factor σ = -0.05, w = 0.2π, V =40 and 
ϕ=π/4, (b) damping factor σ=0.05, w=0.2π, V =40, and ϕ=π/4, (c) damping factor σ=0.00, and 
w=0.2π rad/sec, V =40 volts and ϕ = π/4. (d) Nonsinusoidal and exponentially varying voltages 
when s = ± σ + j0.



1.4  Useful Definitions	 7

Figure 1.6  (continued)
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corresponding to the voltage inputs v1i(t) and v2i(t), respectively, then correspond-
ing to an input v1i(t)+ v2i(t) the output of the network should be v1o(t) + v2o(t). 
From this it automatically follows that if the input is scaled by a factor ξ, the out-
put is also scaled by the same factor ξ.

A passive network is time-invariant, meaning that its properties remain un-
changed with the variation of time. For example, if vo(t) is the output of a linear 
time-invariant network corresponding to an input vi(t), then vo(t+τ) will be the 
output corresponding to an input vi(t+τ). This means that a time-invariant system is 
composed of elements that do not vary with time. As a result, if the input is delayed 
by any amount of time τ, the output is also delayed by the same amount of time τ. 
However, every linear network is not necessarily time-invariant.

A linear network is passive if no voltages or currents appear between any two 
terminals in it before an excitation is applied to the network. Also if the input sig-
nal (voltage or current) has the complex frequency s = σ + jω, then the output will 
have the same frequency. However, the phase angle ϕ and the amplitude V may 
be different at the output.

A linear network is reciprocal if the response remains the same when the termi-
nal pairs (ports) of measurement and excitation are interchanged. 

A linear network is causal if its response is nonanticipatory. For example, if 
vo(t) is the output corresponding to an input vi(t) and for t <T

	 =( ) 0iv t 	 (1.9)

then

Figure 1.6  (continued)
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	 ( ) 0; forov t t T= < 	  (1.10)

A network function is the ratio of the response function to the excitation function 
in the complex frequency (s) domain. The excitation and the response can be volt-
age or current. A network function assumes various names depending on whether 
the excitation and response functions are voltage or current. Table 1.1 summarizes 
the relationships among various excitation, response, and network functions in a 
one-port network. Table 1.2 shows the relationships among various parameters in 
a two-port network.

Although various voltages and currents used in the network are actually in the 
time domain, the parameters in Table 1.1 are in the complex frequency or s do-
main. Therefore, the driving-point or transfer function are defined in the complex 
frequency or s domain. Whether it is a driving-point function or a transfer func-
tion, a network function T(s) can always be described as a rational function of s. A 
rational function in s is the ratio of two polynomials in s. Therefore, it has the form

	 0 1

0 1

( )
n

n
m

m

a a s a s
T s

b b s b s

+ + +
=

+ + +




	 (1.11)

From (1.11) we find that since the right-hand side is a ratio of two polynomials, 
the roots of the numerator polynomial determine the complex frequencies when 
Z(s) goes to zero, while the roots of the denominator polynomial are the complex 
frequencies when Z(s) goes to infinity. Therefore, if we write the numerator and the 
denominator of (1.11) in factored forms as

	 1 2

1 2

( )( ) ( )
( )

( )( ) ( )
n n

m m

a s z s z s z
T s

b s p s p s p

− − −
=

− − −




	 (1.12)

then z1, z2, ... , zn are defined as the zeros of T(s); while p1, p2, ... , pm are defined 
as the poles of T(s). The locations of these poles and zeros of a driving-point or 
transfer function T(s) in the complex frequency plane determine the behavior of 
a network in the time or frequency domain. Consequently, such locations of poles 

Table 1.1  One-Port Network Parameters

Ratio Symbol Used Function Name

( )
( )

V s
I s

Z(s) Driving point

( )
( )

I s
V s

Y(s) Driving point
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and zeros of a network in the complex frequency plane serve as a valuable aid to 
network synthesis.

From a physical standpoint, the poles and zeros of a network are directly re-
lated to its various natural modes of electrical resonance. If T(s) is a driving-point 
impedance function, then the zeros of T(s) denote the frequencies at which the driv-
ing point becomes a short circuit, while the poles of T(s) represent the frequencies 
at which the driving point becomes an open circuit. Corresponding conclusions can 
be drawn about the poles and zeros of a driving point admittance function. For in-
stance, the zeros of a driving point admittance function represent the frequencies at 
which the driving point becomes an open circuit and the poles denote the frequen-
cies at which it is a short circuit.

If T(s) represents one of the transfer functions in Table 1.2, then the poles of 
T(s) represent the frequencies at which no transmission takes place through the 
network. Such frequencies are also known as attenuation poles or transmission 
zeros. Similarly, the zeros of T(s) represent the frequencies at which attenuation is 
zero through the network. We will show in the following sections that not every 
function of the complex variable s is a realizable driving point or transfer function.

1.5   Realizable Driving-Point Impedances

Only those driving point functions that are positive real functions are physically 
realizable. A positive real function Z(s) is defined as [6] one having the following 
properties [7]:

T(s) is a rational analytic function in the right half complex plane and it has 
simple poles with real positive residues on the imaginary axis; and if the real part of 
[T(jω)] is greater than zero for all real values of ω. Mathematically speaking

	 ( )ω ω  ≥ ≥ Re 0; For 0T j 	 (1.13)

A number of other properties of T(s) can be derived from the above conditions. 
The most significant among them is that T(s) has no poles or zeros in the right half 
of the complex plane. Therefore, the roots of the numerator and the denominator 
polynomials always lie either in the left-half plane or on the imaginary axis of the 
complex plane. 

According to Otto Brune’s theorem [8], any rational function that satisfies the 
above conditions and are necessary and sufficient is a positive real (p.r) function 
and represents a physically realizable impedance function. Brune proved his theo-
rem by developing the method of synthesizing a prescribed impedance function as 
a two-terminal (one-port) pair network. Darlington [9] showed how a dissipative 
two-terminal network could be realized as a four-terminal lossless network termi-
nated by a resistance. Darlington’s procedure later became the basis for the syn-
thesis of many passive multiports and mainly two-port filter networks. One has to 
keep in mind that whether it is the synthesis of a driving-point function or a trans-
fer function, it eventually boils down to a synthesis of a driving-point impedance 
function. For example, in case of a filter synthesis the initial prescribed function is 
always a voltage transfer function. In the next step an equivalent compatible input 
reflection function is derived from the transfer function, assuming that the filter is 
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terminated by a 1Ω resistance at the output. The derived input reflection function 
is then transformed into an equivalent input driving-point impedance function as-
suming the source impedance to be 1Ω. The locations of the poles and zeros of the 
voltage transfer function in the complex frequency plane play a significant role in 
the above two transformations. The driving-point impedance is realized using one 
of the standard procedures of Brune [8] and Darlington [9].

A large number of multiport passive components can be shown to be combina-
tions of several two-port subnetworks. Each such two-port network has its own 
frequency characteristics. Hence by definition, it is a filter. For example, a two-
way power divider, which is a three-port device, can be divided into two two-port 
networks using a suitable magnetic or electric wall at a symmetry plane. The same 
thing can be done for parallel transmission line couplers having four ports. There-
fore, the principle, briefly described in the preceding sections for two-port filter 
synthesis, can also be applied to those three- and four-port devices.

In conclusion, we emphasize that the term “electrical filter” is a very general 
one. Electrical filters have applications in every aspect of electrical and communi-
cation engineering. An excellent historical perspective of RF and microwave filters 
is available in Levy and Cohn’s article published by the Institute of Electrical and 
Electronics Engineers (IEEE) in 1984 [10].

The scope of filters is virtually limitless. We should also keep in mind that since 
any transfer function is basically a complex quantity, filtering in general not only 
means energy filtering but also phase filtering. The latter is directly related to time-
delay networks.

Table 1.2  Two-Port Network Parameters

Ratio Symbol Used Function Name

1

1

( )
( )

V s
I s

Z11(s) Driving point

2

2

( )
( )

V s
I s

Z22(s) Driving point

2

1

( )
( )

I s
V s

−
−

Y21 (s) Transfer

2

1

( )
( )

V s
I s

Z21(s) Transfer

2

1

( )
( )

I s
I s

− α21(s) Transfer

2

1

( )
( )

V s
V s

G21(s) Transfer

*V1(s) and I1(s) are at the excitation port and V2(s) and I2(s) are 

at the response port.
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C H A P T E R  2 

Microwave Network Theory

2.1  Introduction

Microwave passive and active networks can be classified as multiport networks. 
Such networks are also known as N-port networks. Assuming the input and the 
output ports of an N-port microwave network are known, its frequency and time 
domain responses to a known excitation can be determined. For instance, if one of 
the ports of a transistor is terminated in a short circuit, the frequency response of 
the remaining two-port network can be obtained from knowledge of the original 
three-port network. Also, in any microwave circuit, system or subsystem, there are 
many components connected in a desired fashion. The frequency response of this 
system can be obtained from knowledge of the individual components.

There are many equivalent ways in which the frequency response of a linear 
microwave network can be calculated [1]. This chapter deals with the representa-
tion of linear microwave networks as multiport black boxes.

2.2  Concepts of Equivalent Voltage and Current

The determination of network characteristics at microwave frequencies involves 
concepts that are substantially different from those used for low-frequency RF cir-
cuits for which voltages and currents that determine impedance can be uniquely 
defined. At microwave frequencies, use of either high-frequency probes or low-
impedance current measurements are not possible because the parasitic impedance 
and capacitance cannot be made small enough. In addition, the physical dimensions 
of a microwave circuit are no longer small compared to the wavelength. Therefore, 
in most cases, the concepts of equivalent voltage and current are used. The equiva-
lent voltage and current are so chosen that the power transmitted along a transmis-
sion line is computed correctly using the equation

	 ( )= × =∫ *1 1
Re . Re( )

2 2S

P E H ds VI 	 (2.1)
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where the power P is assumed to be flowing in the z direction. V and I are the 
equivalent voltage and current respectively, and I* is the complex conjugate of I. 
E and H are the electric and magnetic fields, respectively, in the x-y plane. S is the 
cross-sectional area of the transmission line. We can use the familiar definitions 
of voltage and current only in electrostatics. As soon as the electric field becomes 
time-dependent, it generates a time-varying magnetic field, which in turn gives rise 
to a dynamic electric field. The electric voltage corresponding to this new dynamic 
electric field depends on the path of the line integral chosen to calculate the voltage. 

Consider the transverse part of the electromagnetic field in a transmission line 
(e.g., a coaxial line or a waveguide), shown in Figure 2.1.

	 βξ+ −= ( , ) j z
T TE e x y e 	 (2.2a)

	 βξ+ −= ( , ) j z
T TH h x y e 	 (2.2b)

where ξ is a constant of proportionality, eT(x,y) and hT(x,y) are the normalized 
modal functions such that

	 × =∫ ( ( , ) ( , )). 1T T
S

e x y h x y ds 	 (2.2c)

and β is the propagation constant in the z direction. According to Collin [1] the 
above fields are proportional to the equivalent voltage and current. Therefore

	 β+ + −= ( , ) j z
T V TE K V e x y e 	 (2.3a)

	 β+ + −= ( , ) j z
T I TH K I h x y e 	 (2.3b)

Figure 2.1  Transmission lines: (a) coaxial line and (b) rectangular waveguide.
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where KV and KI are constants of proportionality and V+ and I+ are the forward-
going equivalent voltage and current, respectively. The transmitted power associ-
ated with the forward wave is given by

	 ( )+ + += ×∫
1

Re ..
2 T T

S

P E H ds 	 (2.4)

Combining (2.2c), (2.3a), (2.3b), and (2.4) gives

	 + + += *1
Re( )

2 V IP K K V I 	 (2.5)

Comparing (2.1) and (2.5) gives

	 = 1V IK K 	 (2.6)

Using transmission line theory, we can write

	
+

+ = 0

V
Z

I
	 (2.7)

where Z0 is the characteristic impedance of the line. Comparing (2.2), (2.3), and 
(2.7), we get

	 = 0
I

V

K
Z

K
	 (2.8)

Solving equations (2.6) and (2.8) gives

	 =
0

1
VK

Z 	 (2.9a)

	 = 0IK Z 	 (2.9b)

The characteristic impedance Z0 of a coaxial or two-conductor transmission line 
can be uniquely defined for the fundamental TEM mode. Therefore, the equivalent 
forward voltage and current can be uniquely expressed using (2.2), (2.3), and (2.9) 
as

	 ζ+ = 0V Z 	 (2.10a)
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ζ+ =

0

I
Z

	 (2.10b)

Similarly, the backward voltage and current can be written as

	 κ− = 0V Z 	 (2.11a)

	
κ− =

0

I
Z 	 (2.11b)

where ζ and κ are constants of proportionality.
If the transmission line supports a non-TEM mode (i.e., TE or TM mode in a 

waveguide), the definition of the characteristic impedance cannot be unique. For 
example, if one considers the ratio of the fundamental mode average power flow-
ing through a waveguide and the voltage at the center of the broad wall, the char-
acteristic impedance assumes the form

	

η
=

 
−   

0
0 2

2
( )

1 c

b
Z f

a f
f

	 (2.12a)

where a and b are the width and the height of the waveguide cross section, respec-
tively, η0 is the free space impedance (120π), f is the operating frequency, and fc is 
the cutoff frequency of the fundamental mode.

If one considers the ratio of the same voltage and the total longitudinal current 
then the characteristic impedance assumes the form

	

ηπ =     
−   

0
0 2
( )

2
1 c

b
Z f

a f
f

	 (2.12b)

Also, if one considers the ratio of the fundamental mode average longitudinal power 
and the total longitudinal current, one gets

	

ηπ 
=     

−   

2
0

0 2
( )

8
1 c

b
Z f

a f
f

	 (2.12c)
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Therefore, a unique definition of characteristic impedance is possible only for those 
transmission lines, which support the TEM mode of propagation. However, for a 
transmission line that supports a non-TEM mode the definition of characteristic 
impedance depends on the application. For example, for the purpose of impedance 
matching between different waveguide cross sections, any one of the above three 
definitions may be chosen, but in order to match a two-terminal device to a ridged 
waveguide the voltage current definition is preferred.

2.3  Impedance and Admittance Matrices

Consider the N-port network shown in Figure 2.2. The accessible ports are denoted 
by 1, 2, 3, …, N. In addition, there is a ground terminal at each port. Let us assume 
that the Ii (i = 1,2,3, …, N) denote the port currents and the Vi (i=1,2,3, …, N) de-
note the port voltages, respectively at ports 1 through N. The admittance matrix of 
the network is defined as 

	 [ ] [ ] [ ]=I Y V 	 (2.13)

where 

Figure 2.2   An N-port network.
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	 [ ] [ ] [ ]

  
   
   
   
 = = =  
   
   
           







    



11
11 12 13 1

2 21 22 23 2
2

31 32 33 3

1 2 3

. ; and
.

.
.

N

N

N

N N N NNN
N

VI
Y Y Y Y

I Y Y Y Y
V

Y Y Y YI V Y Y

Y Y Y YI
V

	 (2.14)

The admittance matrix [Y] is obtained by nodal analysis of the network and then 
solving for the port currents or voltages. The corresponding impedance matrix is 
defined as

	 [ ] [ ]−= 1
Z Y 	 (2.15)

The above admittance and impedance matrices are also known as unnormalized 
admittance and impedance matrices, respectively.

A microwave component or a subsystem is connected to a larger system. As a 
result, the impedance offered by the larger system to which it is connected termi-
nates each port of a component. Let us assume that the impedance vector gives the 
set of terminating impedances offered by the embedding system

	 [ ] [ ]= − − − − − − −1 2I I I INZ Z Z Z 	 (2.16)

We define a new set of port voltages and currents, known as the normalized port 
voltages and currents, as follows:

	 = =and Re
Re i

i
i i Ii

Ii

V
v i I Z

Z 	 (2.17)

Note that normalized voltages and currents have the same dimension, which is 
√(watt). Hence, the relationship between the normalized and the unnormalized pa-
rameters can be expressed as

	 [ ] [ ] [ ]=v z i 	 (2.18)

where

	 [ ] [ ] [ ] [ ] [ ] [ ]−= =
1 1
2 2andc cv z V i z I 	 (2.19)

and
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	 [ ]

 
 
 
 =
 
 
  







    



1

2

3

0 0 0

0 0 0

0 0 0Re

0 0 0

l

l

lc

lN

Z

Z

Zz

Z

	 (2.20)

[z] is known as the normalized port impedance matrix and 

	 [ ] [ ]−= 1
y z 	 (2.21)

is the corresponding normalized port admittance matrix. Table 2.1 shows the port 
admittance matrices of most commonly used microwave two-port passive elements.

Below we will show how normalized voltage and current matrices account for 
the interaction of the network with the system that embeds it.

2.4 Scattering Matrix

2.4.1  Definition of Scattering Matrix

The scattering matrix concept with respect to positive and real terminating imped-
ances was introduced by Penfield [2]. Kurokawa introduced the concept of power 
wave variables in 1965 [3] and generalized the Penfield concept.

Following the method due to Kurokawa [3], let us consider a one-port net-
work, as shown in Figure 2.3.

We define the following variables

	
+

= 1 1 1
1

12 Re
I

I

V Z I
a

Z 	 (2.22a)

	
−

=
*

1 1 1
1

12 Re
I

I

V Z I
b

Z 	 (2.22b)

where * denotes the complex conjugate. Solving (2.22a) and (2.22b), we obtain

	
+

=
*
1 1 1 1

1

12 Re
I I

I

Z a Z b
V

Z 	 (2.23a)

	
−

= 1 1
1

12 Re I

a b
I

Z 	 (2.23b)

Now, what are the parameters a1 and b1?
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Table 2.1  Admittance Matrices of Some Common Two-Port Networks

 
[ ] 1 1

1 1
Y Y

− 
=  −   

Admittance matrix does not exist

 

[ ]
2 3 3

1 2 2 3 3 1 1 2 2 3 3 1

3 1 3

1 2 2 3 3 1 1 2 2 3 3 1

Z Z Z

Z Z Z Z Z Z Z Z Z Z Z Z
Y

Z Z Z

Z Z Z Z Z Z Z Z Z Z Z Z

+ − 
 + + + + =
 − +
 + + + + 

  
[ ] 1 2 2

2 1

Y Y Y
Y

Y Y Y

+ − 
=  − + 

Π-network

Transmission line section

 
[ ]

2
,

coth( ) cos ( )

cos ( ) coth( )

g

o

j

l ech l
Y Y

ech l l

π
g α β β

λ

g g

g g

= + =

− 
=  − 

 
[ ] 0 0

0 0

2
,

coth( ) coth( )

coth( ) coth( )

g

j

Y l Y l
Y

Y l Y l

π
g α β β

λ

g g

g g

= + =

− 
=  − 

 
[ ] 0 0

0 0

tanh( ) tanh( )

tanh( ) tanh( )

Y l Y l
Y

Y l Y l

g g

g g

− 
=  − 

  

[ ] [ ] ( )[ ]
( )[ ] [ ]

[ ]

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3
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coth( )
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N

N

N

N N N NN

ech l
Y l

ech l

Y Y Y Y

Y Y Y Y

Y Y Y Y

Y Y Y Y

η g η
g

g η η

η

 − 
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− − 
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 − −=
 
 
 − − − 







    



From: [4].
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From Figure 2.3

	 = −1 1 1s IV E Z I 	 (2.24)

Combining (2.23a), (2.23b), and (2.24); and subsequently multiplying a1 by its 
complex conjugate, we obtain

	 = =
2

2

1 max
14Re

S
S

I

E
a P

Z
	 (2.25)

The right-hand side of (2.25) is easily recognized as the maximum power available 
from the source. Therefore, we can say that a12 is the incident power from the 
source into the load ZL. Using (2.22a) and (2.22b), it can be shown that

	 { }− =2 2 *
1 1 1 1Rea b V I 	 (2.26)

The right hand side of equation (2.26) is the total real power absorbed by the load. 
Therefore, we can come to the conclusion that b12 is the power reflected from the 
load to the source. At this point we define the reflection coefficient

	
*

1 1 1 1 1

1 1 1 1 1

I L I

I L I

b V Z I Z Z

a V Z I Z Z

− −
Γ = = =

+ +
	 (2.27)

Using (2.26), the difference between the incident and reflected power, or in other 
words the power absorbed by the load, can be written as

	 ( )= − = − Γ2 2
max 1 1L S reflP P P a 	 (2.28)

From (2.27), under the matching condition when *
1L IZ Z=  we obtain Γ = 0.

Let us consider the multiport network shown in Figure 2.4.
The scattering matrix of a multiport network can be defined by the equation

	 [ ] [ ] [ ]=b S a 	 (2.29)

Figure 2.3  One-port network.



22	 ������������������������Microwave Network Theory

where [a] and [b] are column matrices whose elements are the power wave am-
plitudes of the incident and reflected waves, respectively, at various ports. If the 
network has N-ports, then [S] is a square matrix of order N.

When the output impedances of the generators connected to the ports of the 
multiport network become purely real and equal to that of the transmission lines 
connected to the respective ports, ai and bi (i=1,2,3, …, N) become the same as the 
complex incident and reflected voltages in the transmission lines. Then we can 
write

	 + −= +i i iV V V 	 (2.30a)

	 + −= +i i iI I I 	 (2.30b)

where

	
+ −

+ −= =i i
Ii

i i

V V
Z

I I
	 (2.31)

Combining (2.30) and (2.31) gives

Figure 2.4  A multiport network terminated by different impedances at the ports.
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+

+= =i
i Ii i

Ii

V
a Z I

Z
	 (2.32a)

	
−

−= =i
i Ii i

Ii

V
b Z I

Z
	 (2.32b)

and the reflection coefficient

	
−

Γ = =
+

i L Ii

i L Ii

b Z Z

a Z Z
	 (2.33)

In (2.30) to (2.32), the + and – superscripts denote the ingoing and outgoing pa-
rameters, respectively. 

The total power absorbed by all the ports is given by the difference between 
the sum total of the incident and reflected powers of all the ports. Mathematically 
speaking, if Ptotal  is the total power and Pk is the power associated with each port, 
then

	 [ ] [ ]
= = =

   = = − = −   ∑ ∑ ∑
2 2

* *

1 1 1

N N N
T T

total k k k
k k k

P P a b a a b b
	 (2.34)

Combining (2.29) and (2.34), the total power absorbed by the network for a loss 
less condition is

	 [ ] [ ] [ ]* * 0
T

totalP a U S S a    = − =     	 (2.35)

where [U] is the unity matrix of order N. From (2.35), we get

	 [ ] [ ]  = 
* T

S S U 	 (2.36)

For a reciprocal and symmetrical multiport network, (2.36) reduces to

	 [ ] [ ]  = 
*S S U 	 (2.37)

which indicates that the scattering matrix of a symmetrical, lossless, and reciprocal 
network is unitary.

Let us write down the expanded form of (2.37):

	

11 11 12 1

22 21 22 2

31 2

N

N

N N N NN

ab S S S

ab S S S

ab S S S

    
    
    
    =
    
    
         

 

 

     

     

 

	 (2.38)
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From (2.38) it can be seen that, in general

	
= = ≠

=
0, 1,2,3, , ;k

i
ij

j a k N k j

b
S

a 	 (2.39)

The condition

	 = 0ka 	 (2.40)

for tall k’s except k=j is created by perfectly matching all but the jth port. The trans-
mitted signal at the ith port and the incident signal at the jth port is appropriately 
monitored and Sij is computed using (2.39). For a detailed description of the proce-
dure, the reader is referred to [1].

For a given network terminated by a set of real impedances given by [ZI] in 
(2.16), the scattering matrix can be computed by using the following procedure.

•• Obtain the port admittance matrix [Y] using nodal analysis and then solving 
for the node currents;

•• Invert the admittance matrix [Y] to obtain the corresponding impedance ma-
trix [Z];

•• Normalize [Z] using 

	 [ ] [ ] [ ] [ ]− −=
1 1
2 2

c cz z Z z 	 (2.41)

where the diagonal matrix [zc] is obtained from (2.20).
Obtain the [S] matrix from 

	 [ ] [ ] [ ] [ ] [ ] −
=  −   +    

1
S z U z U 	 (2.42)

Solving (2.42) gives

	 [ ] [ ] [ ] [ ] [ ]−
=  −   +    

1
z U S U S 	 (2.43)

For a reciprocal network, all the matrices associated with the network are sym-
metrical matrices, which means

	 [ ] [ ] [ ] [ ]= =, , etc.
T T

Z Z S S 	 (2.44)

2.4.2  Transformation of Scattering Matrix Due to Shift in Reference Plane

Consider Figure 2.5. The unprimed reference planes are the original reference 
planes with respect to which the scattering matrix [S] of the N-port network is 
defined. Now, let us assume that the reference planes are moved away from the 
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network to their new positions marked by the primed letters: '
jt  : j = 1,2,…, N. The 

new scattering matrix of the network is given by

	 [ ] [ ] [ ]  = 
'

L LS S S S
	 (2.45)

where the matrix 

	 [ ]

β

β

β

−

−

−

 
 
 
 =
 
 
  



1 1

2 2

... 0

... 0

...

0 0 ... N N

j l

j l

L

j l

e

e
S

e

	 (2.46)

and βk is the propagation constant of the wave at the kth port. Keep in mind that 
what is defined as the reflection coefficient for a one-port network becomes the 
scattering matrix for a multiport network. Therefore, in a sense it is a generalized 
reflection coefficient. Consequently, if the set of impedances terminating the ports 
is altered, the scattering matrix of the network is also changed. For example, since 
the reflection coefficient of a one-port network is defined with respect to a reference 
impedance, the scattering matrix of a multiport network is also defined with respect 
to a reference set of impedances that terminate the ports. Consider Figure 2.5. If the 
set of port impedances are changed from ZIi to liZ′, i = 1, 2, …, N, then according 
to (2.45), the definitions of normalized voltage and current wave vectors will also 
change. As a result, the new scattering matrix is defined as [4,5]

	 [ ] [ ] [ ] [ ] [ ] [ ][ ] [ ] [ ]
− −     = − Γ  − Γ   − Γ  − Γ        
1 12 2'S U S U S U 	 (2.47)

Figure 2.5  Shift in reference planes.
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where

	 [ ] [ ] [ ] −
      Γ = − +      

1
/ /
c c c cz z z z 	 (2.48)

and the matrix [zc] has been defined in (2.20) and the matrix [ ]cz ′  is obtained by re-
placing the diagonal terms ZIi by { 1

IiZ− }, i = 1, 2,…, N in (2.20).Table 2.2 shows the 
scattering matrices of the most commonly used microwave circuit elements.

Table 2.2  Scattering Matrices of Common Networks 
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From: [4].
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All the elements of the scattering matrix of a passive, lossless, and reciprocal 
network cannot be chosen independently. Let us assume that Figure 2.6 represents 
one such two-port network whose scattering matrix is given by

	 [ ]  
=  

 
11 12

21 22

S S
S

S S
	  (2.49)

From reciprocity, [S] must be symmetrical. Therefore

	 [ ]
θ θ

θ θ

  
= =   

   

11 12

12 11

11 12 11 12

12 11 12 11

j j

j j

S S S e S e
S

S S S e S e 	 (2.50)

Combining (2.37) and (2.50) gives

	 + =2 2

11 12 1S S 	 (2.51)

	 π
θ θ π= ± + = 11 12 2 ; 0,1,2

2
n n 	 (2.52)

This means that if S11 is known in complex form, S12 can be obtained from (2.51) 
and (2.52). Equation (2.51) represents conservation of power in a lossless two-port 
network.

For a lossless nonreciprocal network, the above relations become

	 + = + =2 2 2 2

11 21 22 12 1S S S S 	 (2.53)

	 + =* *
11 12 21 22 0S S S S 	 (2.54)

	 π
θ θ θ θ π+ = + + = 11 22 12 21 2 ; 0,1,2

2
n n 	 (2.55)

where θ21 and θ22 are the phase angles associated with the elements S21 and S22, 
respectively.

Figure 2.6  Two-port network.
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2.4.3  Scattering Matrix of a Lossless Three-Port Network

An application of a unitary condition given by (2.37) shows that it is impossible 
to simultaneously match all the ports of a three-port lossless reciprocal network. 
However, it is possible to match all three ports if the circuit is lossy or nonrecipro-
cal. Examples are a Wilkinson power divider or a three-port circulator.

2.4.4  Usefulness of Scattering Matrix

At this point it is worthwhile to discuss the usefulness of a scattering matrix. The 
concept of a scattering matrix is more general than admittance and impedance 
matrices. Many circuits may not possess admittance or impedance matrix. Typical 
examples are ideal transformers having nonfinite elements. On the contrary such 
transformers have scattering matrices. According to H. J. Carlin [6], all passive 
networks possess scattering matrices.

In microwave engineering, power flow is of primary consideration. Therefore, 
a scattering matrix is extremely useful. Let us consider the network in Figure 2.7. 
Let Pa represent the available power from the generator and PL the power dis-
sipated in the load ZL. Then it can be shown that the magnitude of the forward 
transmission coefficient is given by

	 =2

21
L

a

P
S

P
	 (2.56)

2.4.5  Scattering Matrix and the Concept of Insertion Loss

Let us consider the two-port network shown in Figure 2.8(a). The transfer coef-
ficient of the network is given by

	
 

=  
 

1
2

21
1

2 gL

L

RV
S

E R 	 (2.57)

where Rg is the real part of the generator impedance ZI1 and RL is that of the load 
impedance ZL
Now

	 =2 *
21 21 21S S S 	 (2.58)

Figure 2.7  Circuit representation of a two-port network.
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Therefore, from (2.58) and (2.25), we obtain

	 = =

2

2

21 2
1

2

8

L

L L

a

g

V

R P
S

PE
R

	 (2.59)

where Pa is the available power from the generator and PL is the power dissipated 
in the load RL.

Let us consider the network in Figure 2.8(a). Suppose we have interposed a 
two-port network between the reference planes t1 and t2 as shown in Figure 2.8(b). 
Let the voltages across the load resistance RL before and after the interposition of 
the two-port network be VL and p

LV , respectively.  Also, let the powers dissipated in 
RL before and after the interposition of the two-port network be PL and p

LP , respec-
tively. The insertion power ratio of the two-port network is defined as

	 =
p

L

L

P
IPL

P
	  (2.60)

Analyzing the circuit in Figure 2.8(b), we obtain

	 ( )
=

+

2 2
1

2 2

p
L L

l L g L

EP R

P V R R 	 (2.61)

Combining (2.60) and (2.61) gives

Figure 2.8  (a) Two-port network and (b) two-port network inserted.
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	 ( )
=

+
2 2

21

4 1p
L gL

L g L

R RP

P SR R 	 (2.62)

Under a perfectly matched condition

	 = 2

21

1p
L

L

P

P S
	 (2.63)

Equation (2.63) is a very useful relationship in network synthesis.

2.5   Measurement of Scattering Matrix

As mentioned in Section 2.4, scattering or S-matrix is a generalized reflection coef-
ficient matrix. Such a matrix supplies not only the information on reflection coef-
ficient but also the information on transmission coefficient. The instrument that is 
used for quantitative measurement of an S-matrix is known as a reflectometer. A 
frequency domain reflectometer is an instrument or special system that allows fast 
and accurate measurement of S-parameters of a two-port device over a frequency 
band. The heart of a reflectometer is a passive device called a directional coupler. 
A frequency domain reflectometer consists of two precision directional couplers 
that sample the transmitted and reflected signals and feed the sampled signals to 
two separate detectors so that the ratio between the two sampled signals can be 
determined.

Figure 2.9 shows the schematic diagram of a directional coupler. The primary 
line is the section of the transmission line that carries the power of the signal to be 
sampled. The secondary line is the section of transmission line carrying a fraction 
of the power that travels in the forward direction in the primary line and appears 
at port 3 or the desired coupled port. A reflectionless load terminates the remaining 
port or the undesired port of the secondary line and thereby prevents any power 
coupled to that port from being reflected back to the system. The primary line 

Figure 2.9  Schematic diagram of a directional coupler.
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return loss is the return loss introduced in a matched transmission line when the 
directional coupler is inserted. The secondary line is terminated in a matched load. 
Since a directional coupler is a symmetrical and reciprocal device, the primary line 
return loss will be the same for either orientation of the coupler if the matchings 
offered by the connectors and terminations at all ports are identical. The second-
ary line return loss is the return loss measured looking into Port 3 while all other 
ports are terminated by matched loads and the detector at Port 3 offers a matched 
termination. 

Coupling is the ratio of the power injected into the main line through port 1 
to the power coming out of port 3 when all ports are matched. This is coupling 
to the wave in the forward direction. The coupling C expressed in decibels (dB) is 
defined as

	 =
3

10log iP
C

P
	 (2.64)

while the insertion loss of the couplers is defined as

	 =
2

10log iP
I

P
	 (2.65) 

which basically accounts for power loss from the input signal due to coupling and 
the ohmic loss in the forward path (i.e., the transmission line connecting port 1 and 
port 3). Besides coupling and insertion loss, the other parameter of major impor-
tance for a directional coupler is directivity, which is the ratio of the power from 
the secondary line P3 to the secondary line P4 when a certain amount of power 
is injected into the input port. For example, suppose the power impinging on the 
matched load is P4 and the power coming out of port 3 is P3. Then directivity of the 
coupler is defined as

	 = 3

4

10log
P

D
P

	 (2.66)

Directivity is a measure of isolation of port 4 or the undesired port from the input 
port. Therefore, one has to keep in mind that a directional coupler is basically a 
four-port device. However, it is reduced to a three-port one by terminating one 
of the ports in a matched load. Figure 2.10 shows how a directional coupler is 
employed in a reflection meter [7]. Let the forward transmission coefficient of the 
directional coupler be CT and the coupling coefficient be CP so that 

	 =21 20log TS C 	 (2.67)

and

	 =31 20log PS C 	 (2.68)



32	 ������������������������Microwave Network Theory

The directional coupler being symmetrical and reciprocal, the scattering matrix is 
given by

	 [ ]
 
 
 =
 
 
 

0 0

0 0

0 0

0 0

T p

T P
D

P T

P T

C jC

C jC
S

jC C

jC C

	 (2.69a)

with

	 = − 21T PC C 	 (2.69b)

Using the above equations, we can write

	 =2 1Tb C a 	 (2.70)

	 = Γ2 1T La C a 	 (2.71)

	 =3 1Pb C a 	 (2.72)

	 = Γ4 1T P Lb C C a 	 (2.73)

Figure 2.10  Schematic diagram of reflection meter employing a directional coupler. (From [7]. 
Reprinted with permission from John Wiley and Sons.)
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Assuming the heterodyne receiver or a detector, in the case of a scalar network ana-
lyzer, is matched to the directional coupler and port 3 is terminated into a matched 
load, we can write

	 = =4 3 0a a 	 (2.74a)

The magnitude of the reflection coefficient of the one-port device is then given by

	 Γ = = 4
11

1
L

T P

b
S

C C a
	 (2.74b)

Figure 2.11 shows the basic configuration of a scalar network analyzer for full two-
port scattering parameter measurements [7].

In Figure 2.11, mi(i = 1,2,3) are the measured quantities proportional to a1, b1 
and b2, respectively. The scattering parameters of the device under test (DUT) can 
be obtained from the following equations

	 = = 32
11 11 21 21

1 1

mm
S c S c

m m
	 (2.75a)

The proportionality constants c11 and c21, functions of the directional coupler, are 
obtained by using the equations

	 = − =1 1
11 21

2 3

1 1
Short Through

Short Through

m m
c c

m m
	 (2.75b)

The quantities with a Short superscript are obtained by connecting a short circuit 
at the reference plane of port 1. The quantities with a Through superscript are 
obtained by connecting both ports. Repeating the above steps with the DUT ports 
reversed gives |S22| and |S12|.

Figure 2.11  Unidirectional scalar network analyzer. (From [7]. Reprinted with permission from John Wiley 
and Sons.)
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The simplest network analyzers are the scalar network analyzers that use power 
detectors. For most applications, only the magnitudes of the scattering parameters 
are needed. However, when the phases of the scattering parameters are required, 
the power detectors are replaced by heterodyne receivers. For an excellent account 
on the subject of vector network analyzers (VNAs) the reader is referred to refer-
ence [7].

2.6   Chain or ABCD Matrix

The chain matrix or ABCD matrix is particularly useful in cascading or chain con-
necting microwave networks. The networks may be purely two-port or may have 
multiports. For a single isolated network, the ABCD matrix relates the output volt-
ages and currents to the input voltages and currents. Let us consider the multiport 
network shown in Figure 2.12. The input voltages and currents are V1,…, VN and 
I1,…, IN. The output voltages and currents are VN+1,…,V2N and IN+1,…, I2N, re-
spectively. The input and the output parameters are related using the following 
matrix equation

	 [ ] [ ]
[ ] [ ]

+

+

+

+

  
  
  
  
        =      −    

−  
  
  
   −   









11

22

2

11

2 2

2

N

N

NN

N

N

N N

VV
VV

VV A B
II C D

I I

I I

	 (2.76)

where [A],[B],[C],[D] are N × N square matrices.  For a two-port network, (2.76) 
reduces to

	
    

=     −    
1 2

1 2

V VA B

I IC D
	 (2.77)

For a reciprocal two-port network, shown in Figure 2.13, it can be seen that

	 − = 1AD BC 	 (2.78)

Or in general

	 [ ] [ ] [ ] [ ] [ ]− =A D B C U 	 (2.79)

where [U] is an identity matrix of order N.



2.6   Chain or ABCD Matrix	 35

As mentioned above, the ABCD matrix is very useful in obtaining the overall 
response of a chain connection of a number of two-port networks. Let us consider 
the chain connection of two two-port networks, as shown in Figure 2.14
Let the ABCD matrices of the individual networks with respect to the reference 
planes [t1, t2] and [t2, t3] be [T1] and [T2], respectively. Then it can be shown that 
the ABCD matrix of the cascaded network is given by

	 [ ] [ ] [ ]= 1 2T T T 	 (2.80)

Equation (2.80) can be generalized for a cascade of more than two networks using 
the same principle.

Figure 2.12   Multiport network for ABCD matrix representation.

Figure 2.13  Reciprocal two-port network.
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2.6.1  Use of ABCD Matrix in Computing Network Properties

In the previous section we showed that a chain of cascaded two-port networks can 
be reduced to an equivalent two-port network by finding the overall ABCD ma-
trix. Let such an equivalent two-port network be fed at the input port by a voltage 
source of output impedance Zg and terminated at the output-port by a load ZL, as 
shown in Figure 2.15.

Using (2.77) and the relationship

	 = =2 2LLV V Z I 	 (2.81)

it can be shown that the input impedance of the network is given by

	
+

=
+

L
in

L

Z A B
Z

Z C D
	 (2.82)

and the output impedance is

	
+

=
+

g
out

g

Z D C
Z

Z B A 	 (2.83)

Figure 2.15  ABCD matrix representation of a two-port network.

Figure 2.14  Two-port networks in tandem.



2.6   Chain or ABCD Matrix	 37

The reflection coefficients looking into the input and the output are given by

	
*

in g
in

in g

Z Z

Z Z

−
Γ =

+ 	 (2.84)

and

	
−

Γ =
+

out L
out

out L

Z Z

Z Z
	 (2.85)

respectively.
The voltage gain is given by

	 = = =
+ + +

2L L
v

g g L L g g

V V Z
A

V V Z A B Z Z C Z D 	 (2.86)

The power gain is given by

	 = =
+

2

1

Re
Re

inL L

L L

ZP Z
G

P Z Z A B 	 (2.87)

where 

	 =1 1 1P V I 	 (2.88)

is the power delivered to the input port of the network and 

	 = 2L LP V I 	 (2.89)

is the power delivered to the load.
The transducer power gain is given by

	 = =
+ + +

2
Re

4
Re

gL L
T

AG L L L g g

ZP Z
G

P Z Z A B Z Z C Z D 	 (2.90)

where PAG is available power from the source.

2.6.2  Normalized ABCD Matrix

Using the normalized voltage and current definitions in (2.17), we can define the 
normalized ABCD matrix as follows [5, 8]. Suppose the multiport network in 
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Figure 2.4 is terminated by a set of impedances Zi (i = 1,2,…, 2N). Then we can de-
fine a set of normalized voltages and currents vi and ii, respectively (i = 1,2,…, 2N) 
according to (2.76). These normalized voltages and currents can be related using 
the normalized ABCD matrix as follows:

Table 2.3  Unnormalized ABCD Matrices of Common Networks
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	 (2.91)

where [An],[Bn],[Cn],[Dn], are N × N square matrices. For a two-port network, 
(2.91) reduces to

	
     

=     −     
1 2

1 2

n n

n n

v A B v

i C D i
	 (2.92)

The unnormalized and normalized ABCD matrices are related through

	
[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]

−
− −         =                

11 1
2 2

1 1
2 2

0 0
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IN INn n

n n
IN IN

Z ZA B A B

C D C D
Z Z

	 (2.93)

[ZIN] is a diagonal matrix of real elements ZI1, ZI2,…, ZIN, and [ZI2N] is a diagonal 
matrix of real elements ZI(N + 1), ZI(N+2),…, ZI(2N).  In the case of a simple two-
port network, (2.93) reduces to

Table 2.3  {continued)

From: [4].
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−
   

     
=      

      
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1

1 2

1 2

1 1
0 0
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n n
I I

n n

I I

A BA B Z Z
C DC D

Z Z

	 (2.94) 

Obviously the normalized ABCD matrix takes into consideration the effects of the 
impedances terminating the ports of a network. It can be shown that the scattering 
matrix of a two-port network is related to its normalized ABCD matrix via

	 [ ] + − − − 
=  + − −+ + +  

2( )1
2

n n n n n n n n

n n n nn n n n

A B C D A D C B
S

D B A CA B C D
	 (2.95)

The unnormalized ABCD matrices of some useful networks are shown in Table 2.3.
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C H A P T E R  3

3.1  Introduction

The purpose of a uniform transmission line is to transfer energy from a generator 
to a load. Transmission lines can be of various types depending on the applica-
tion and the microwave and millimeter-wave frequency band used. The length of a 
transmission line may vary from a fraction of a wavelength in lumped element ap-
plications, to several wavelengths in distributed element circuitry. Open-wire lines 
are used at frequencies far below the microwave band and are replaced by coaxial 
lines above 1 GHz. Above around 3 GHz, hollow metal tubes or waveguides and 
their various derivatives, such as finlines, are used. Besides the metallic waveguides, 
surface waveguides and dielectric waveguides are also used at microwave and mil-
limeter-wave frequencies. Other types of planar transmission lines, which can be 
realized using printed circuit board (PCB) techniques, such as microstrip, stripline, 
suspended stripline, slotline, and coplanar lines are used over the entire band of 
microwave and millimeter-wave frequencies. In this chapter, we present a brief de-
scription of transmission line theory and the properties of various transmission lines 
used in microwave passive circuit design.

3.2  Transmission Line Equations

Transmission lines are used at microwave frequencies to support modes, which can 
be broadly divided into two types, the transverse electromagnetic (TEM) and the 
nontransverse electromagnetic (non-TEM) modes of propagation. The four basic 
parameters that characterize a transmission line are

1. 	 The characteristic impedance, Z0;
2. 	 The propagation constant, β;
3. 	 The attenuation constant α;
4. 	 The peak power handling capability, Pmax.

Properties	of	Microwave	Transmission	
Lines
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For the transmission line supporting a non-TEM mode, the above four parameters 
are dependent on the type of the supported mode, and the definition of Z0 is nonu-
nique. However, in all cases the parameters are functions of the geometrical cross 
section and the material properties of the transmission line. Figure 3.1 shows the 
lumped element equivalent circuit of a transmission line supporting the TEM mode, 
where λ is the operating wavelength, L and R are the per unit lengths of series in-
ductance and resistance, respectively, and C and G are the per unit lengths of the 
shunt capacitance and conductance, respectively. Table 3.1 shows the functional 
relationships among various parameters of a TEM transmission line.

The voltage and current waves in a two-conductor transmission line, includ-
ing all planar transmission line supporting TEM and quasi-TEM modes, can be 
represented as 

	 g g+ − − += +0 0( ) z zV z V e V e 	  (3.1)

	 g g g g+ − − + + − − += + = −0 0 0 0
0

1
( ) ( )z z z zI z I e I e V e V e

Z
	 (3.2) 

respectively, where the terms associated with e–gz represent the forward-traveling 
wave and the term associated with e+gz represent the backward-traveling waves. In 
the above equations the characteristic impedance Z0 and the propagation constant 
g of the transmission line are given by

	
ω

ω

+
=

+0

R j L
Z

G j C
	 (3.3)

	 g ω ω α β= + + = +( )( )R j L G j C j 	 (3.4)

where α is the attenuation constant (nepers/unit length) and β is the phase or propa-
gation constant (radians/unit length).

For a lossless line with R = G = 0 we see that

Figure 3.1  Lumped element equivalent circuit of a two-conductor transmission line.
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	 =0

L
Z

C
	 (3.5)

	 g ω β= = radians unit lengthj LC j 	 (3.6)

In reality, a transmission line will have some finite amount of attenuation and the 
overall attenuation constant is given by

	 α α α= +t c d 	 (3.7)

where αc and αd are the attenuation constants due to conductor and dielectric losses, 
respectively. For small losses

	
β

α = = Nepers unit length
2 2c

c o

R
Q Z

	 (3.8)

	
β

α = =
0

Nepers unit length
2 2d

d

G
Q Y

	 (3.9)

where Qc = ωL/R and Qd = ωC/G are the conductor and the dielectric Q-factors of 
the line. The overall Q-factor of the line is given by

	
=

+
c d

c d

Q Q
Q

Q Q 	  (3.10)

Table 3.1  Transmission Line Parameters
Quantity General Line Ideal Line Approximate Result or Low-Loss Line
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For ZL = 0

Zin Z0 tanh γl Z0 tan βl (See Figure 3.2)
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For moderately lossy transmission lines, the propagation constant g and the charac-
teristic impedance Z0 are given by

	 g β
 

= − +  
1 1

1
c d

j j
Q Q 	 (3.11)

	
 

= + +  0

1 1
1

c d

L
Z j

C Q Q 	 (3.12)

The concept of transmission line loss and Q-factor (also known as unloaded Q-fac-
tor) is extremely useful when the lines are used as resonators. Q-factor determines 
the passband insertion loss in a band-pass filter and the rejection depth of a band 
reject filter composed of such resonators.

3.3  Transmission Line with Electrical Discontinuity

Figure 3.2 shows a transmission line that has been abruptly terminated by a known 
complex load ZL. When such a termination occurs, the forward- and backward-
traveling waves on the line interfere and give rise to a standing-wave pattern, as 
shown in Figure 3.2.

The fraction of the incident voltage that is reflected by the load ZL, when it is 
not equal to the characteristic impedance Z0, of the line is given by

	
−

+

−
Γ = =

+
0 0

00

L

L

V Z Z

Z ZV
	 (3.13)

Figure 3.2  A terminated transmission line and the voltage standing wave.
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In general Z0 is a complex quantity. However, for a lossless line it is a real number 
for all practical purposes. Therefore, if ZL is complex then Γ is also complex. Equa-
tion (3.13) gives the value of the reflection coefficient at z = 0. At any other point, 
z = –l on the line it assumes the general form

	
( )

20 0
( )

0 0

( )
( )

( )

j l
j lin

j l
in

Z l Z V e
z e

Z l Z V e

g
g

g

− + −
−

+ − −

− −
Γ = = = Γ

− −
	 (3.14)

Knowing the reflection coefficient, we may find the standing-wave ratio

	
1
1

+ Γ
=

+ Γ
S 	 (3.15)

Combining (3.13) and (3.14), we obtain

	 0
0

0

tan( )
tan( )

L
in

L

Z jZ l
Z Z

Z jZ l

β

β

+
=

+
	 (3.16)

For a short-circuited transmission line (ZL = 0)

	 0 tan( )inZ jZ lβ= 	 (3.17)

For an open-circuited line (ZL = ∞)

	 0 cot( )= −inZ jZ lβ 	 (3.18)

For a matched load (ZL = Z0)

	 0inZ Z= 	 (3.19)

The above equations are useful in realization of reactive elements in microwave 
circuits. In the following few sections we will discuss the properties of a number of 
most commonly used two-conductor transmission lines

3.4  Two-Conductor Transmission Lines 

3.4.1  Two Round Conductors of Equal Diameter

Figure 3.3 illustrates a two-conductor transmission line with round conductors. 
The per unit length inductance (L), capacitance (C), and resistance (R) for the line 
are, respectively, given by

	
( )2

0.4ln mH m
H

L
d

 =  
  	 (3.20)
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( )ε
=

27.669
F m

2
ln

rC
H
d 	 (3.21)

	 ( )2
ln

f H
R m

d
m

πs
= Ω 	 (3.22)

where f is the operating frequency, m is the permeability, s is the conductivity of the 
rods, and εr the dielectric constant of the medium. A two-conductor line is used up 
to frequencies at which the radiation loss is negligible.

3.4.2  Coaxial Line

Coaxial lines find extensive use over the widest frequency spectrum, starting from 
extra-low frequency (ELF) to the millimeter-wave band. Although a coaxial line can 
support non-TEM modes, the dominant mode is TEM. As a result, the characteris-
tics of a coaxial line can be obtained from static field analysis. Figure 3.4(a) shows 
the most basic form of a coaxial line. Figure 3.4(b) shows the dependence of char-
acteristic impedance on the ratio of the diameters of the inner and outer conductors. 
The parameters of the coaxial line, shown in Figure 3.4(a), are shown in Table 3.2 
as functions of the geometrical dimensions. For values of the attenuation constant 
at temperatures other than 20°C, one should multiply the value of α in Table 3.2 
by [1 + 3.9 × 10–3(T – 20)]1/2, where T is in degrees celsius. Figure 3.4(b) shows the 
variations of coaxial line parameters with respect to the ratio b/a.

3.4.2.1  Q-Factor of a Coaxial Line

The Q-factor of a coaxial line is an important parameter in realizing microwave 
filters using coaxial line resonators. It is obtained from (3.23) as 

	 c d

c d

Q Q
Q

Q Q
=

+
	 (3.23)

where the conductor Q-factor, Qc, is given by

Figure 3.3  Cross section of a two-round conductor transmission line.
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and a and b are in inches, fc is in gigahertz. The dielectric Q-factor Qd is given by

Figure 3.4   (a) Cross section of a coaxial line, and (b) variation of characteristic impedance of a 
coaxial line as a function of b/a of the coaxial line shown in (a).
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	 1
tandQ

δ
= 	 (3.25)

where tanδ is the loss tangent of the material filling the space between the conduc-
tors. The above equation is valid for copper as the conductor. For other conductors, 
(3.24) should be multiplied by a factor ζ, where

	
s

ζ
s

= Cu

m

	 (3.26)

where σCu and σm are the bulk conductivities of copper and the metal in question, 
respectively.

The electric and magnetic fields of the dominant TEM mode of a coaxial line 
are 

Table 3.2  Coaxial Line Characteristics
Parameter Expression Unit

Capacitance 55.556
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a
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 =   

kW

λ0 = Free-space wavelength; f = operating frequency in GHz; tanδ = loss tangent of the dielectric; Emax = 

maximum breakdown electric field in the dielectric uniformly filling the space between the conductors; αc 

= copper at 20°C.
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2

I
H

rϕ π
= 	 (3.28)

	 0r z zE H E Hϕ = = = = 	 (3.29)

where V is the voltage between the two conductors, I is the current flowing through 
the conductors, and z is the direction of wave propagation. The cutoff wavelength 
of the dominant TEM mode in a coaxial line is infinite. In other words, the cutoff 
frequency of the dominant mode of a coaxial line is zero. Figure 3.5 shows the elec-
tromagnetic field pattern of the dominant (TEM) mode in a coaxial line.

A coaxial line can also support higher-order modes like TE and TM modes. 
Figure 3.6 shows the field patterns of a first few non-TEM higher-order modes in a 

Figure 3.5  Field pattern of TEM mode in a coaxial line (--- H, – E ).

Figure 3.6  Higher-order mode transverse field patterns of a coaxial line (see Figure 3.5).
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coaxial line. The higher-order modes are referred to as TEmn and TMmn modes. For 
TE modes there is no axial electric field (Ez) component and for TM mode there is 
no axial magnetic field (Hz) component. The subscript m denotes the number of 
half-cycle variations of the radial component of the field in the angular (Φ) direc-
tion and the subscript n denotes the total number of half-cycle variations of angular 
field component in the radial (r) direction. Figure 3.7 shows the order in which the 
first few higher-order modes appear in a coaxial line. TE11 is the first higher-order 
mode above the fundamental mode. Here c is the velocity of light in the dielectric.

From the above figures, it is recommended that in order to ensure the propaga-
tion of the fundamental TEM mode, the operation frequency in coaxial line should 
not exceed fu = c/{π(a+b)}. In other words, the operating wavelength λ should ex-
ceed π(a+b).

3.4.3  Other Forms of Coaxial Line

3.4.4  General Equation for Attenuation in Two-Conductor Transmission Lines 

Consider a two-conductor transmission line with an arbitrary cross section, as 
shown in Figure 3.8. The attenuation in the line at a frequency f in gigahertz is 
given by [1]

	 ( )0

0

1 Nepers meter
0.2998

r f Z

Z

π ε
α

 ′
= − 

 
	  (3.30)

where Z0 is the characteristic impedance of the line and 0Z′ is that of the line when 
the dimensions are changed by the amount of half the skin depth, δs, as shown in 
Figure 3.8; δs is given by

	 0.0822 rcu
s f

ρ
δ =   (mils)	 (3.31)

where ρrcu is the resistivity of the conductor with respect to copper. Equation (3.30) 
is applicable to any of the transmission lines described so far. The conductor attenu-

Figure 3.7  Order of cutoff frequencies of various modes of a coaxial line.



3.4  Two-Conductor Transmission Lines 	 51

Table 3.3  Formulas for Z0 (Ω) of Various Derivatives of Coaxial Line
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Figure 3.8  Loss calculation in a two-conductor line.
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ation constant of a coaxial line based on the above approach is shown in Figure 3.9. 
The corresponding conductor Q-factor is shown in Figure 3.10.

The overall attenuation in a coaxial line is obtained by adding the dielectric 
attenuation to the conductor attenuation (see Table 3.2). Figure 3.10 shows the 
variation of conductor Q-factor of a coaxial line with conductor diameter ratio. 
Table 3.4 shows the attenuation in standard commercially available coaxial lines.

3.4.5  Maximum Power-Handling Capability of a Coaxial Line

The maximum power-handling capability of a coaxial line is determined by the 
breakdown electric field Em between the two conductors. Under normal atmo-
spheric pressure in an air-filled coaxial line the breakdown field is approximately 
2.80 × 104 volts/cm. The maximum average power that can be handled by a coaxial 
line is given by

Figure 3.9  Conductor loss in a coaxial line.

Figure 3.10  Conductor Q of a coaxial line.
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Figure 3.11 shows the variation of maximum average power-handling capability of 
an air-filled coaxial line as a function of the ratio of diameters of the conductors for 
a fixed outer diameter. The maximum power is transmitted when the diameter ratio 
is 1.65. The corresponding characteristic impedance is 30 Ω.

The average power-handling capability of a coaxial line is determined by the 
insulator dielectric strength and the thermal properties of the line that are related 

Table 3.4  Attenuation in Standard Commercially Available Coaxial Lines (db/100 ft)
RG/U Type/ Freq (MHz 1.0 10 50 100 400 1000

8,8A, 10A, 213 0.15 0.55 1.3 1.9 4.1 8.0

9, 9A, 9B, 214 0.21 0.66 1.5 2.3 5.0 8.8

14, 14A, 217 0.12 0.41 1.0 1.4 3.1 5.5

17, 17A, 18, 18A, 218, 219 0.06 0.24 0.62 0.95 2.4 4.4

55B, 223 0.30 1.2 3.2 4.8 10.0 16.5

58 0.33 1.2 3.1 4.6 10.5 17.5

59, 59B 0.33 1.1 2.4 3.4 7.0 12.0

141, 141A, 400, 142, 142A 0.30 0.90 2.1 3.3 6.9 13.0

LDF4-50A 0.06 0.21 0.47 0.68 1.4 2.3

LDF5-50A 0.03 0.11 0.25 0.36 0.78 1.4

7/8” Air Heliflex 0.035 0.110 0.251 0.359 0.75 1.24

1-5/8” Air Heliflex 0.020 0.064 0.142 0.202 0.411 0.662

3-1/8” Air Heliflex 0.11 0.037 0.077 0.109 0.230 0.384

4-1/2” Air Heliflex – – 0.048 0.076 0.132 0.214

6-1/8” Air Heliflex – – 0.037 0.051 0.103 0.0164

Figure 3.11  Maximum power handling of a coaxial line.



54	 ������������������������������������������Properties of Microwave Transmission Lines

to the breakdown voltage and the insertion loss, respectively. High temperature 
and a good heat transfer mechanism increases the average power handling while 
higher dielectric strength and good dielectric strength with high breakdown field 
increases the peak power-handling capability. Breakdown due to large peak power 
is independent of frequency. However, it varies with the density of the pressuring 
gas and other factors in a coaxial line. High altitude and high ambient temperature 
reduce the maximum average power-handling capability of a line by impeding the 
heat transfer out of the transmission line. In most cases, the information carrying 
microwave or RF power in coaxial line is modulated. The peak power-handling 
capability is therefore determined to a large extent by the degree and type of modu-
lation. The continuous wave (CW) power handling of a coaxial line is often treated 
as the average power-handling capability. However, it is always necessary to check 
both the average and the peak power-handling capabilities. Table 3.5 shows the 
peak power-handling capability of standard commercially available coaxial lines.

3.4.6  Coaxial Line Discontinuities

No transmission line is useful in microwave circuits without discontinuities in them. 
The three most important discontinuities in a coaxial line are (1) step in the inner 
or outer conductor, (2) T-junction, and (3) bend. Of these three, the most impor-
tant and the most frequently encountered one is the step discontinuity. Figure 3.12 
shows the two types of coaxial line step discontinuity in a coaxial line. They are 
formed by abrupt changes in either the inner or the outer coaxial line conductor.  
Step discontinuities in coaxial lines were analyzed using the variational technique 
by Marcuvitz [2]. The discontinuity susceptances in the two cases are given by
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Y0 and 0Y ′ are the characteristic admittances on the two sides of the step discontinuity.
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Table 3.5  Maximum Power Handling Capability of Coaxial Cable (in Watts)
@ Frequency

Dielectric 
Diameter

Overall 
Diameter 400 MHz 1 GHz 3 GHz 5 GHz 10 GHz

M17/RG178, 
CN178SC, 
CN178TC, RG196 
A/U

.033” .071” 123 78 41 28 14

M17/131-RG403 0.33” .116” 123 78 41 28 14

M17/113-RG316, 
CN316SC, 
CN316TC, RG188 
A/U, SB316

.060” .098” 240 160 80 57 30

M17/152-00001, 
CN316SCSC, 
CN316TCTC

.060” .114” 240 160 80 57 30

M17/94-RG179, 
CN176SC, 
CN179TC, RG187 
A/U

.063” .100” 310 200 110 76 41

SS405 .064” .104” 240 160 80 57 30

SS75086 .064” .100” 240 160 80 57 30

LL120 .080” .120” 720 460 250 190 140

M17/95-RG180, 
RG195 A/U

.102” .141” 400 250 135 93 50

M17/60-RG142, 
CN142SCSC, 
CN142TCTC

.116” .195” 1100 550 350 245 140

M17/111-RG303 .116” .170” 1100 550 350 245 140

M17/128-RG400, 
SB400

.116” .195” 1100 550 350 245 140

SS402 .117” .163” 1100 550 350 245 140

SB142 .117” .195” 1100 550 350 245 140

LL142 .145” .195” 1200 720 400 310 220

LL235 .160” .235” 1500 900 540 410 300

LL393-2 .185” .270” 1900 1100 680 510 380

M17/112-RG304 .185” .280” 1900 1100 680 510 380

SB304 .185” .280” 1450 870 460 330 190

LL335 .250” .335” 2900 1800 1050 850 600

M17/127-RG393, 
SB393

.285” .390” 2800 1700 880 620 350

LL450 .360” .450” 7250 4200 2200 1600 1015
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Figure 3.12  Step discontinuity in a coaxial line: (a) change in inner diameter, and (b) change in 
outer diameter.
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χ is the first nonvanishing root of
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The above equations are applicable to both types of step discontinuities shown in 
Figure 3.12. However, for the type shown in Figure 3.12(b), the following changes 
are to be made:
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The equivalent circuit is valid in the wavelength range λ ≥ 2(c – a)/g1, provided the 
field is rotationally symmetrical. Inaccuracy in (3.33) is within a few percent for c/a 
< 5 and the operating wave length is not too close to 2(c – a)/g1. For a rigorous, gen-
eral, and accurate description of a coaxial line discontinuity one must use numerical 
electromagnetic (EM) analysis of the junction. A suitable method is mode matching 
analysis [3]. An approximate scattering matrix of the junction can be obtained from 
the above equivalent circuit using the following equation
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The coaxial line step discontinuity is a very important circuit component in coaxial 
line-harmonic reject low-pass filters and matching transformers, as will be shown 
in Chapter 5.

The above section is an example of how the effect of a discontinuity in a co-
axial line can be described using an equivalent circuit. Such equivalent circuits 
were indispensable [4] until the advent of modern digital computers and highly 
accurate numerical techniques [5,6]. Today, virtually all types of discontinuities 
in microwave transmission lines can be described by their scattering matrices us-
ing numerical techniques and digital computers. In fact, any complex microwave 
structure involving several different discontinuities and straight sections of uniform 
transmission lines can be analyzed and optimized as a whole using a single analy-
sis without considering each discontinuity separately. Therefore, it is sufficient to 
know the approximate equivalent circuit of a discontinuity in order to have a quali-
tative understanding of its behavior. Figure 3.13 shows the equivalent circuits of 
other types of coaxial line discontinuities. Such equivalent circuits can be derived 
from the scattering matrix obtained through full EM analysis.

Figure 3.13  Coaxial line discontinuity: (a) T-junction, and  (b) gap,
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T-junctions are commonly used in stub tuners and band-pass and low-pass 
filters. Gap discontinuities are used in band-pass and high-pass filters. There are 
various other types of discontinuities that are formed between a coaxial line and 
another type of transmission line; for example, a transition from a coaxial line to a 
waveguide or a coaxial line and a microstrip line. Such discontinuities will be treated 
at an appropriate point, once the properties of waveguides and other planar trans-
mission lines such as stripline, suspended stripline, and microstripline are described.

3.5  Rectangular Coaxial Line

Rectangular coaxial lines are often used at the input and output of interdigital 
and combline filters using rectangular bar resonators, hybrids, power dividers, and 
couplers [7]. Figure 3.14 shows the basic configuration of the cross section of a rect-
angular coaxial line. No accurate closed-form equation exists for the characteristic 
impedance of a rectangular coaxial line except for the exactly square cross-section 
case. For a square cross section (a1 = a2 = a and b1 = b2 = b), the characteristic im-
pedance is given by [8]
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where a and b are the dimensions of the outer and the inner conductors of the co-
axial line. Figure 3.15 shows the variation of the characteristic impedance Z0 of a 
square coaxial line with b/a ratio. The attenuation constant of a square coaxial line 
is given by
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where Rs is the surface resistance of the walls of the outer conductors. The overall 
attenuation constant α can be calculated using (3.46) and the equation for dielectric 
loss αd in Table 3.2. The total attenuation constant is the sum of αc and αd.

Figure 3.14  Cross section of a rectangular coaxial line.
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3.5.1  Higher-Order Modes in a Rectangular Coaxial Line

Like circular coaxial lines, rectangular coaxial lines support higher-order modes. 
The propagation characteristics of higher-order modes in a rectangular coaxial line 
can be calculated using numerical techniques based on full electromagnetic analysis. 
However, for conventional circuit and transmission line theory based passive com-
ponent design, only the cutoff frequency of the first higher-order mode is significant 
because it sets the highest frequency range for the fundamental TEM mode opera-
tion. Figure 3.16 shows the variation of first higher-order mode cutoff frequency as 
a function of the outer conductor size for b/a = 0.4. For more detailed information 
on square coaxial lines refer to [9,10].

3.5.2  Square Coaxial Line with Circular Inner Conductor

The most commonly used coaxial line used as a resonator in microwave filters is 
the coaxial line with square outer conductor and a circular inner conductor. Figure 
3.17 shows the cross section of such a coaxial line.

The characteristic impedance of a coaxial line with square outer conductor and 
circular inner conductor is given by Lin [11] (see Figure 3.17).

Figure 3.15   Characteristic impedance of square coaxial line as a function of b/a ratio (b1 = b2 = b) 
and a1 = a2 = a).

Figure 3.16  Cutoff characteristics of the first higher-order mode in a square coaxial line.
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	 (3.47)

The attenuation in the line is minimum when Z0 equals 77Ω. Substitution of that 
value for Z0 in (3.47) gives b/a = 3.369. Choice of such impedance in cavity resona-
tor design offers the maximum unloaded Q-factor.

3.6  Strip Transmission Line

Striplines are one of the most common types of transmission lines used in micro-
wave circuits. This chapter presents the fundamental characteristics of this type of 
transmission line together with its governing equations. Striplines are useful for 
designing virtually all microwave circuit components and these are described in the 
rest of the chapter.

3.6.1  Basic Configuration

The stripline, shown in Figure 3.18 is obtained by theoretically moving the side 
walls of a rectangular coaxial line, shown in Figure 3.14, to infinity. It is the old-
est planar transmission line that has been in use in microwave integrated circuits 
since its creation by R. M. Barrett in 1950 [12]. In its simplest form, it consists of 
a conducting strip, of width W and thickness t, separated from a pair of common 
conducting ground planes of theoretically infinite extent compared to the width 
W of the strip conductor, W << a; where a is the width of the ground plane. The 
ground planes are separated by a thickness b and the entire space is homogeneously 
filled with a dielectric material of complex dielectric constant εr(1 – j tan δ). The 

Figure 3.17  Cross section of coaxial line with square outer conductor and circular inner conductor.

Figure 3.18  Basic balanced stripline configuration.
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ground planes are kept at the same potential. In a balanced stripline, the strip con-
ductor is equidistant from the ground planes. In an unbalanced stripline, there is 
an offset and the strip is not equidistant from the two ground planes as shown in 
Figure 3.22. The first significant theoretical investigation on striplines was carried 
out by S. Cohn in the mid-1950s [13]. While Sanders Associates used the trade 
name Triplate [14], the term stripline was first introduced by Airborne Instruments 
Laboratories (AIL).

3.6.2  Modes in a Stripline

Although striplines can support waveguide type modes (TE or TM), the fundamen-
tal mode of propagation in a stripline is the TEM mode having no cutoff frequency. 
The field configuration for the fundamental mode is shown in Figure 3.19. The us-
able single mode bandwidth of a stripline is determined by the cutoff frequency of 
the lowest-order waveguide mode.  For that mode, the two ground planes have the 
same potential, the electric field is normal to the strip and the ground planes, and 
the longitudinal electric field is zero with cutoff frequency [15] given by

	
2 4

c

r

c
f

W d
b

b b
ε

=
 +  

	 (3.48)

where c is the velocity of light in free space (3 × 108 meters/sec), 4d/b is a function 
of the cross section of the stripline. For a balanced stripline when t/b = 0 and W/b > 
0.35, then 4d/b is a function of b/λc alone and is given in Figure 3.20.

3.6.3  Characteristic Impedance of a Balanced Stripline

The characteristic impedance of a balanced strip transmission line can be accurately 
calculated from [16]:
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Figure 3.19  Field configuration in a stripline.
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for W/b < 0.35, where
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for W/b ≥ 0.35
where
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2Cf /εis the per-unit length fringing field capacitance between the strip and each 
ground plane and ε = ε0εr; ε0 = 8.854e–12. Farads/meter (permittivity of free space). 
Figure 3.21 shows the dependence of characteristic impedance on W/b with strip 
thickness t/b as a parameter.

Figure 3.20  Cutoff wavelength in a stripline as a function of d/b ratio.
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3.6.4  Unbalanced Stripline

In an unbalanced stripline the strip is nonequidistant from the top and the bottom 
ground planes, as shown in Figure 3.22. Such striplines find many applications in 
microwave circuit design.

The characteristic impedance of an unbalanced stripline is given by [16]:
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where C/ε is the per unit length static capacitance between the strip and the two 
ground planes, normalized by the permittivity ε of the medium.

Figure 3.21  Variation of a balanced stripline characteristic impedance with t/b and w/b.

Figure 3.22  Unbalanced (offset) stripline.
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The per-unit length fringe-field capacitances Cf1 and Cf2 are obtained from (3.52) 
by replacing b with (b–s) and (b+s), respectively. The above formulas are applicable 
to single strips only. Figure 3.21 shows the variations of Z0 with W/b for various 
values of t/b for a balanced stripline. Note that for s = 0 an unbalanced or offset 
stripline becomes a balanced or symmetric stripline.

3.6.5  Propagation Constant in a Stripline

The propagation constant β of a stripline is given by 
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where λg and λ0 are the wavelengths in the stripline and free space, respectively.

3.6.6  Synthesis of a Stripline

In order to obtain the structural dimensions for a stripline to be designed, when the 
characteristic impedance Z0 and the substrate dielectric constant εr are given, the 
following formula is used [17]:
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There is no closed-form design equation for the unbalanced stripline shown in Fig-
ure 3.22. An iterative procedure based on analysis and optimization is used to 
synthesize an unbalanced stripline for a given characteristic impedance Z0 and sub-
strate dielectric constant εr. The above equations have been programmed in many 
commercial software packages [18–20] for prompt analysis and synthesis of an un-
coupled single stripline. Some of those software packages use simple optimization 
routines in order to synthesize unbalanced striplines.

3.6.7  Attenuation Constant in a Stripline

The attenuation constant of a stripline, balanced or unbalanced, is given by [21]

	 Nepers unit lengthc dα α α= + 	 (3.62)

The attenuation constant αc due to conductor loss in the line at a frequency f in 
gigahertz is obtained from [22]:
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where Z0 is the characteristic impedance of the line and 0Z ′ is the characteristic im-
pedance of the line when W, t and b are replaced by, W = W + δs, t + δs, and b – δs, 
respectively, in (3.49) to (3.56).
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is the skin depth at frequency f in GHz and δrcu is the conductivity relative to cop-
per. The attenuation constant αd due to dielectric loss is given by
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The unloaded Q-factor of a stripline is given by
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3.6.8  Power-Handling Capability of a Stripline

The average power P, in kilowatts, that can be carried by a matched balanced strip-
line with rounded edges is shown in Figure 3.23 [23]. The ground plane to ground 
plane distance is measured in inches. Although the strip edges are assumed to be 
round, an approximate value of Z0 can be obtained from either Figure 3.21 or from 
the analysis equations presented above.

3.6.9  Stripline Discontinuities

Stripline discontinuities are as essential an element of microwave circuits as their 
uniform line counterpart. Any arbitrary discontinuity in a stripline can be decom-
posed into a few basic forms of discontinuities, as shown in Figure 3.24. These 
include an abrupt change in width or step discontinuity, a gap, a circular hole in the 
strip, an open end, a cross junction, a T-junction, and an angled bend. The appear-
ance of discontinuities causes alterations in the electromagnetic field configurations 
of an otherwise uniform stripline. Therefore, the modified field configuration can 
be taken into account by appropriate incorporation of a shunt or a series capaci-
tance or inductance and transformers. For example, an open end can be represented 

Figure 3.23  Power-handling capability of a stripline. (From [23]. Reprinted with permission from 
Artech House.)
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by a shunt capacitance. Figure 3.24 shows the configurations and the correspond-
ing equivalent circuits of the discontinuities [24,25,26]. The equivalent width D, 
shown by the dashed lines in Figure 3.24 (D1 and D2 in Figure 3.24(a) and D in 
Figure 3.24(f)), is obtained by conformal mapping techniques, as shown in Figure 
3.25. The parameters b, t, and W are defined in Figure 3.18 and 3.22 for a balanced 
and an unbalanced stripline, respectively.
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Figure 3.24  Basic stripline discontinuities and the equivalent circuits.
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For W/b ≤ 0.5
where K(k) is the complete elliptic integral of the first kind
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and the associated complementary elliptic integral is defined as

	 ( )2( ) 1K k K k= −′ 	 (3.70)

and

	

2 2
ln2 1 ln

b t t
D W

bπ π
 = + + −   	 (3.71)

for W/b > 0.5

3.6.9.1  Step Discontinuity

A change in strip width or step discontinuity is essential for the design of strip-
line matching transformers and low-pass filters. The equivalent circuit parameters, 
shown in Figure 3.24(a), are given by
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Figure 3.25  Parallel plate equivalent of a stripline.
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The normalized scattering matrix of the discontinuity can be written as
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The equivalent network for equal normalizations at the input and the output ports 
includes a transformer, as shown in Figure 3.24(a).

3.6.9.2  Gap Discontinuity

A series capacitance in a stripline is realized by a gap discontinuity, as shown in Fig-
ure 3.24(b). The equivalent circuit is, however, a pi network of one series and two 
shunt capacitances. The series component is due to the fringing capacitance from 
one strip to the other strip and the shunt components are due to the field distur-
bance at the edge of each strip. As the gap increases, the series capacitance decreases 
and the two shunt capacitances tend toward that of an open-ended stripline. The 
normalized susceptance parameters of the equivalent pi network are given by
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3.6.9.3  Circular Hole Discontinuity

A hole discontinuity in a stripline is introduced to realize reactive tuning in filters 
and resonators. Such discontinuities are predominantly inductive in nature. The 
most common hole discontinuity is a circular hole discontinuity, as shown in Figure 
3.24(c). The susceptance parameters of the equivalent pi-network are given by
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Note that the equivalent networks for gap and circular hole discontinuities depend 
on where the reference plane is considered to be situated.

3.6.9.4  Open-End Discontinuity

An open-end discontinuity occurs whenever an open-circuited stripline stub is 
used in components such as matching networks, and filters. Figure 3.24(d) shows 
a stripline open end and two equivalent networks. The network can be a shunt 
capacitance Coc or an extended length ∆l. The second representation assumes that 
a perfect magnetic wall exists at a distance ∆l from the physical open circuit. The 
open circuit capacitance is given by
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The length extension ∆l can be obtained from the open-end capacitance
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The reflection coefficient from the open end discontinuity can be calculated as
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In the above equations, Z0 is the characteristic impedance of the stripline.

3.6.9.5  T-Junction Discontinuity

A T-junction discontinuity occurs in stripline stub matching, stub-loaded low-pass 
and band-pass filters, branchline couplers, hybrid rings, and in many other com-
ponents. Figure 3.24(e) shows the stripline T-junction and the equivalent network. 
The network parameters are obtained from
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for D3/D1 < 0.5, and
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	 (3.89)

for D3/D1 > 0.5. The transformer turns ratio n is given by
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and
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In the above equations D1 and D3 are the widths of the equivalent parallel plate 
waveguides for strips of widths W and W′ respectively, Z1 and Z3 are corresponding 
characteristic impedances, and Y1 and Y3 are the respective characteristic admit-
tances. The normalized scattering matrix of the T-junction is obtained from

	
2 2 2
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∆
	 (3.94)

	
2

1 3
33

2( / ) ( 2 )a bZ Z n j X X
S

− + +
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∆
	 (3.95)

and

	 2
1 32 / ( 2 )a bZ Z n j X X∆ = + + + 	 (3.96)

3.6.9.6  Bend Discontinuity

A bend discontinuity occurs mainly in stripline transitions and hybrids. Figure 
3.24(f) shows a stripline bend discontinuity and the equivalent network. The pa-
rameters of the network are obtained from the following equations derived from 
Babinet’s principle and the equivalent parallel plate waveguide model.

	
1

2 ( ) 1.9635aX D x
x

λ ψ
 = + + 
 

	 (3.97)

	 cot
2 2bX

D
λ θ

π
= − 	 (3.98)

with q, in degrees, x is given by
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	 0.5 1
180

x
θ = + 

 
	 (3.99)

and

	 ( ) 0.5223ln( ) 0.394x xψ = + 	 (3.100)

Equation (3.97) is an approximation of the T-function [26]. Accurate values of the 
T-function for various x are available in [27]. The reference planes T1 and T2 meet 
at an angle q. This modifies the scattering parameters of the bend by multiplying S11 
and S22 by ej2βζ and S12 and S21 by ejβζ, where

	 ( )tan
2

D W
θ

ζ = − 	  (3.101)

The above models for the discontinuities have been included as a library in many 
commercially available microwave circuit solvers [28,29,30]. However, any strip-
line circuit comprising several such discontinuities and uniform transmission lines 
can also be analyzed, as a whole, very accurately using full-wave (EM) solvers 
[31,32].

3.7  Parallel-Coupled Lines

Parallel-coupled lines find extensive use in microwave circuits and components such 
as filters, couplers, baluns, and delay lines. The coupling takes place by the capture 
of electromagnetic fields produced by one of the lines by the other and vice versa. 
Figure 3.26 shows the most commonly used and the oldest parallel-coupled line in 
microwave circuit design, known as the edge-coupled stripline.

3.7.1  Edge-Coupled Striplines

The electrical behavior of the coupled stripline structure shown in Figure 3.26 can 
be described in terms of four characteristic impedances known as the even-and the 
odd-mode impedances. The impedances are given by [33]

Figure 3.26  Edge-coupled stripline.
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where
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π
 ∆ = + − − −  	 (3.116)

	 2i i
p r

W
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b
ε= 	 (3.117)

For W1 = W2 = W and t/b < 0.1, the above equations simplify as follows:
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where
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( )
( )2

22
2lnf

t b tb t t
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b t b b t

 −− = −    − −  	 (3.122)

Figure 3.27 shows the variations of even- and odd-mode impedances of coupled 
symmetrical striplines with strip width and separation. Note that for S >> W and S 
>> b the even- and odd-mode impedances become equal and the above equations 
become applicable to isolated single striplines.

3.7.2  Synthesis Equations

Closed-form equations for synthesis of symmetrical coupled striplines are available 
for zero thickness (t = 0) strips [34]. For a given set of even- and odd-mode char-
acteristic impedances Z0e and Z0o, εr, b, the strip width W and spacing S between 
them are given by

	 12
tanh e o

b
W k k

π
−= 	 (3.123)

	
12

tanh e

o

kb
S

kπ
−= 	 (3.124)

Figure 3.27  Analysis curves for coupled striplines. (Reprinted from [33] with permission from the 
IEEE.)
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where for 0r iZε  (i=e or o) ≥ 188.5 Ω 
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For synthesis of coupled striplines of nonzero strip thickness, one can use an opti-
mization routine based on analysis equations (3.102) to (3.122), where (3.118) and 
(3.122) are used for the initial guesses for W and S. However, today there exist a 
number of analysis and synthesis software solutions for general stripline structures, 
which are based on either full EM analysis or quasi-static analysis [35]. A huge 
storehouse of information on stripline design is available at http://www.circuitsage.
com.

3.7.3  Attenuation in Coupled Striplines

The generalized equation based on the incremental inductance rule described in 
Section 3.4.4 can be used to calculate the conductor losses in coupled striplines. 
The process is very simple and it is separately applied to the even and odd modes as 
follows. Let Z0e and Z0o be the even- and the odd-mode characteristic impedances 
of the coupled lines and 0 0ande oZ Z′ ′  be those of the dimensions changed by the skin 
depth, as shown in Figure 3.28. Then the conductor losses for the even and odd 
modes are given by [36]

	 α ε π
 

= − 
 

0
0 '
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i e
e r i

e
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0
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i o
o r i

o

Z
f

Z 	 (3.126)

where f is in GHz. The dielectric loss in coupled stripline is calculated as [36]

	 ( )28.97 tan dB md r fα π ε δ= 	 (3.127)

The above equation applies to both the even and odd modes of both lines. It will be 
shown in later chapters how the above equations are used in analysis and synthesis 
of planar microwave passive components.
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3.7.4  Broadside Coupled Striplines

Broadside coupled striplines, shown in Figure 3.29, are extensively used in couplers 
of very tight coupling and stripline high-pass and wideband filters. The analysis 
equations for broadside coupled striplines (t ≈ 0) are as follows [37,38]:

	
0 0
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∞ ∞− ∆

= 	 (3.128)

where
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	 (3.129)

and
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Figure 3.28  Modified coupled stripline for loss calculation.

Figure 3.29  Broadside coupled stripline.
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The even mode impedance is obtained from
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where K(k) is the complete elliptic integral of first kind with k as an argument.

3.7.4.1 Synthesis of Broadside-Coupled Striplines

Given Z0o and Z0e the corresponding W/b and S/b are obtained as follows [37,39,40]:
From (3.133) we get
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3.7.4.2  Broadside-Coupled Offset Striplines

Offset coupled striplines are a useful planar transmission line in microwave circuit 
design. The structure is shown in Figure 3.30. It offers more coupling than is offered 
by edge-coupled striplines and is more versatile than broadside-coupled striplines. 
However, analysis of offset coupled striplines is more cumbersome than the analysis 
of other coupled striplines. There exist no closed-form analysis equations for offset-
coupled striplines. Consequently, the designer has to use EM analysis-based com-
puter-aided design (CAD) programs to estimate the quantitative electrical behavior 
of this important transmission line. Shelton [41] has given closed-form synthesis 
equations for offset-coupled striplines. These are as follows.

We assume that the strip thickness is negligible (i.e., t ≈ 0) and first normalize 
the dimensions s = S/b, w = W/b, w0 = W0 /b, and wc = Wc /b. Then we define two 
coupling ranges.

Loose coupling:

	 0.35 and 0.70
1

cww
s s

≥ ≥
−

	

Tight coupling:

	 02
0.35 and 0.85

1 1
ww

s s
≤ ≥

− +
	

and define the parameter
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Synthesis equations for loose coupling case:
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Synthesis equations for tight coupling case:
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where C0 is given by (3.143).

3.7.4.3  Broadside Slot-Coupled Striplines

The amount of coupling in broadside-coupled striplines, shown in Figure 3.30, can 
be controlled by controlling the strip width W and the separation S. However, an 
added degree of freedom can be achieved by introducing a slot between the strip, as 
shown in Figure 3.31. The structure is known as a broadside slot-coupled stripline. 
Such a structure is efficiently used in a constant group delay stripline filter. The 
analysis and synthesis equations are as follows [42].

Analysis:
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where K′(k) = K(k′) are elliptic integrals of first kind and 21i ik k= −′ .
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Synthesis:
Given εr , b, S, Z0e, and Z0o, W/b and D/b are obtained from [40]
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Figure 3.30  Broadside-coupled offset stripline.

ε

Figure 3.31  Broadside slot-coupled stripline.
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where
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Use Z0e and Z0o in (3.136) to (3.138) to obtain the values of ke and k0, respectively. 
In the above equations, Θ is the Jacobian theta function, H is the Jacobian eta func-
tion, and Z(a) is the Jacobian zeta function, while sn, cn, and dn are the Jacobian 
elliptic functions [43].

3.7.5  Coupled-Slab Lines

Coupled slab lines, shown in Figure 3.32, are extensively used in combline and in-
terdigital filter realizations. Theoretical analysis of coupled slablines was performed 
by Edward Crystal [44] and Stracca et al. [45]. However, Rosleniec [46] presented 
accurate equations and computer algorithm for CAD of coupled slablines. The 
equations are as follows:
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Figure 3.32  Coupled slabline.
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The above analysis equations can be used in a suitable optimization routine for 
synthesis of a coupled pair of slablines. Rosleniec has given the following algorithm 
for such an optimization scheme. Let V1(x,y) and V2(x,y) be the penalty functions, 
defined as 

	 1 0 0( , ) ( , )e eV x y Z x y Z= − 	 (3.171)

	 2 0 0( , ) ( , )o oV x y Z x y Z= − 	 (3.172)



3.8  Inhomogeneous Transmission Lines 	 87

to be minimized. A simple FORTRAN code can be written using IMSL library 
subroutine in DEC Visual FORTRAN, based on Powell’s minimization. The initial 
approximation of the solution is given by [47]

	 ( )
0

20 60 0.987 0.171 1.7234
Z

k kx e
π

 
− 

 − − = 	 (3.173)

	 ( ) ( )0 01 1
ln

1
r

y x
rπ

+ = − − 
	 (3.174)

where

	 ( )

( )20.001 1.117 0.683
0 0

0 0 0 0
0 0

4
, and

k k
e o

e o
e o

Z Z
Z Z Z k r

Z Z xπ

+ −−  = = =  +  
	

3.8  Inhomogeneous Transmission Lines 

In an inhomogeneous transmission line the space between the conductors is inho-
mogeneously filled with different dielectric materials. Figure 3.33 shows a shielded 
microstrip line as an example of inhomogeneous transmission line. The line can 
be considered as an asymmetrical strip transmission line in which the space below 
the strip is filled with a dielectric substrate of dielectric constant εr and the space 
above the strip is filled with air (εr = 1). Inhomogeneous transmission lines have 
various advantages over their homogeneous counterparts. For example, inhomoge-
neous transmission lines have lower loss and especially in planar inhomogeneous 
transmission lines, mounting surface mount devices are easier. However, almost all 
inhomogeneous transmission lines suffer from the existence of undesired higher-
order modes and have a reduced fundamental mode band of operation. Below, we 
present equations for the basic electrical parameters of the most commonly used 
inhomogeneous transmission lines.

Figure 3.33  Inhomogeneous transmission line (shielded microstrip line).
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3.8.1  Shielded Microstrip Line

A shielded microstrip line is a special form of inhomogeneous stripline where the 
space above and below the strip is filled with different dielectric materials. In most 
cases the space above the strip is filled with air (εr = 1). Figure 3.34 shows the ho-
mogeneous equivalent of shielded microstrip line.

The parameter εeff  is known as the effective dielectric constant of the microstrip 
line. It is given by [48]

	 ( ){ }1
1 1

2eff r rqε ε ε= + + − 	 (3.175)

where

	 ( )c Tq q q q∞= − 	 (3.176)

	
( ) ( )

110
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∞
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	 (3.177)
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2 ln2
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t
q

hW
h

π
=

	 (3.178)

and

	
2 1

1 2

tanh 1.043 0.121 1.164c

h h
q

h h

 
= + − 

 
	 (3.179)

	
1 1

r

W W
u

h h

 
= + ∆  

 
	 (3.180)

Figure 3.34  Homogeneous equivalent of shielded microstrip line.
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  

	 (3.181)

	 0 0 0( ) /a a
effZ Z Z ε∞

∞= − ∆ 	 (3.182)

where 0Z∞ is the characteristic impedance of the microstrip line when h2 = ∞ and the 
structure is uniformly filled with a material of dielectric constant unity. The reduc-
tion in characteristic impedance for a finite value of h2 is given by the formulas 
below.

For W/h1 ≤ 1:
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0
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270 1 tanh 0.28 1.2a h
Z

h
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For W/h2 ≥ 1:
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	 (3.184)
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   −      
= +   	 (3.185)

The above equations are accurate to within ± 0.5% for all practical purposes. How-
ever, the equations are based on curve fitting of results based on static analysis of 
shielded microstrip line. Such analyses are valid only in the low frequency range. As 
the frequency increases, dispersive effects become significant to substantially alter 
the values of characteristic impedance and effective dielectric constant, as shown in 
Figure 3.35. The asymptotic values of the frequency-dependent effective dielectric 
constant are εeff (0) and εr.The corrections for dispersion are given by [49]
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	 (3.186)

where A and B are functions of normalized shield height h2/h1, and given by
for W/h1 ≥ 0.41 
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and for W/h1 ≤ 0.41

	

1

1 1 2

1

0.5 1 0.5 ln

1.4 1.5

hW W
A

h h h

W
B

h

     
= + + +          

 
= −   

	

	 x
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f
f
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= 	 (3.187)

fT is the cut of frequency of the lowest-order TE mode of the equivalent parallel 
plate waveguide model of microstrip at zero frequency [49]. fT is given by 

	 ( )2
T

r

c
f

W W ε
=

+ ∆ 	 (3.188)

Figure 3.35  Frequency dispersion in effective dielectric constant of a microstrip.
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where c is the velocity of light in free space and ∆W, which accounts for the fringing 
field effects at the edges of the strip is given by

	
ε

ε ε
∆ = −1

0 0

r

r

h
W W

Z c
	 (3.189)

where Z0 is the characteristic impedance of the microstrip at zero frequency and 
ε0 is the free space permittivity. One should use h2/h1 ≥ 5 for open microstrip. The 
above dispersion equations yield accuracy within 98% over the frequency range: 

	 2L Lf f f≤ ≤ 	 (3.190)

and mostly 1% inaccuracy elsewhere. fL is the frequency at which the onset of low-
est order TE surface wave mode takes place in the corresponding open microstrip. 
fL can be calculated from [50]

	 ( )
1

110
GHz

( ) 1
L

r

f
h mm ε

≈
− 	 (3.191)

It can be regarded as the highest frequency below which a microstrip can be used 
with the stated accuracy for all practical circuit design and analysis applications. 
However, the achievable accuracy in circuit realization depends on fabricational 
tolerances of the thin-film or thick-film structures and the variations of the proper-
ties of the materials used.  

Using (3.188) and (3.189) it can be shown that lowest-order TE mode cutoff 
frequency is given by

	
0

0 12
r

T
eff

Z
f

h

ε

m ε
= 	 (3.192)

The dispersion model presented here has been developed by Wells and Pramanick 
[51] using numerical data from Pozar and Das’s hybrid model technique and the as-
sociated computer program PCAAMT [52]. PCAAMT is a commercially available 
general-purpose software for analysis of any type of multilayer transmission lines.

The frequency dependence of microstrip characteristic impedance is obtained 
from Pramanick and Bhartia’s model [53]:

	 ( )
( )2

2( 1)

( ) 4 (1 )e e r

q
Z f

f f q qε ε ε

−
=

− − − 	 (3.193a)

where 
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q
ε

ε

−
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−
	 (3.193b)

Equation (3.193a) yields results within ±1% of spectral domain technique. 
There exists no closed form synthesis equation for a shielded microstrip line. 

However, the analysis equations above can be used in an optimization routine in 
a computer program for accurate synthesis of a shielded microstrip line. Any such 
optimization routine begins with the initial approximation using Wheeler’s [17] 
equation for static synthesis of a microstrip line. The equations are as follows:

	
1

1 8 4

H HW e e
h

−− 
= − 

 
	 (3.194)

where

	
( )0 2 1 11 1 4

ln ln
120 2 1 2

r r

r r

Z
H

ε ε π

ε ε π

+    −
= + +   +    	 (3.195)

3.8.2  Coupled Microstrip Line

The structure of a coupled pair of unshielded microstrip lines is shown in Figure 
3.36. These lines form the basic building block in numerous microwave integrated 
circuits and VLSI circuits. There exist reasonably accurate analysis equations for 
coupled pairs of unshielded or open microstrip lines only [54]. For any other cou-
pled pair of microstrip lines one has to use computer programs based on static or 
dynamic electromagnetic analysis. One such example is PCAAMT [52]. Below we 
present closed-form analysis equations for open or unshielded coupled microstrip 
lines on low or moderate dielectric [54] constant substrates. First we define the 
pertinent parameters as follows:

Z0e(0) = quasistatic even-mode characteristic impedance;

Z0o(0) = quasistatic odd-mode characteristic impedance;

ε0e(0) = quasistatic even-mode effective dielectric constant;

ε0o(0) = quasistatic odd-mode effective dielectric constant.

Figure 3.36  Cross section of coupled open microstrip lines.



3.8  Inhomogeneous Transmission Lines 	 93

We also define u=W/h and g=S/h. Then
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where
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The static odd-mode effective dielectric constant is given by
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where 
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εeff(0) in the above equations is the effective dielectric constant of a single open mi-
crostrip of width W and zero strip thickness on a substrate height h and dielectric 
constant εr; see (3.175) with h1 = h and t = 0.

The frequency dependence of the even- and odd-mode open-coupled mi-
crostrips is given by
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where
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The even-mode characteristic impedance is given by
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The static odd-mode characteristic impedance is given by
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The above equations are accurate within ±1% for the following most commonly 
encountered ranges of geometrical and material parameters:

	
0.1 / 10

1 10
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W h

S h

ε

≤ ≤
≤ ≤

≤ ≤ ∞

	

and

	 / 0.01t h ≤ 	

There exist no closed-form design equations for coupled microstrip lines outside 
the above ranges of geometrical and material parameters. However, a number of 
full-wave analysis based software programs are available [52]. Synthesis of coupled 
microstrip is required in many filter and coupler designs. In each case, the designer 
needs to find the normalized strip width W/h and the normalized edge to edge 
gap S/h for a desired coupling value and impedance matching. Either an iterative 
method or an optimization routine, based on the above equations, is used to obtain 
those values for a given operating frequency, substrate dielectric constant [52].

3.8.3  Suspended Microstrip Line

Since the effective dielectric constant of conventional microstrip lines described in 
the preceding sections is high enough to render the dimensions of millimeter-wave 
microstrip circuits impractically small in size, use of an air gap between the ground-
plane and the substrate reduces the effective dielectric constant and the modified 
structure is known as a suspended microstrip line. The cross section of an open or 
unshielded suspended microstrip line is shown in Figure 3.37.

The characteristic impedance and the effective dielectric constant of an open 
suspended microstrip are obtained from [55].
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where u = W/(a+b) and 
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where the coefficients a1 and b1 are given by
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In order to fabricate the appropriate suspended microstrip, one requires the 
strip width W, the substrate and the air-gap thickness a and b, respectively, and the 
substrate dielectric constant εr for a specified characteristic impedance Z at a speci-
fied frequency f. Under the assumption of a quasi-static mode supported by the 

Figure 3.37  Open suspended microstrip line.
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line, f does not play any role (dispersion is neglected), and the following synthesis 
equations are valid:

	 ( )1 xW a
e

b b
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	 (3.240)

where x is the solution of the cubic equation
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3.8.4  Shielded Suspended Microstrip Line

The configuration of a shielded suspended microstrip line is shown in Figure 
3.38(a). The characteristic impedance is given by
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Figure 3.38   (a) Shielded suspended microstrip line, and (b) edge-coupled suspended stripline.
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	 2 3Y Y Y= + 	 (3.255)
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In the above equations βn = nπ/L and Ca is obtained by using (3.249) with εr = 1. 
The substrate thickness h2 in the above equations is kept sufficiently small so that 
it only serves the purpose of mechanically supporting the metallization pattern. As 
a result, the dispersion in effective dielectric constant is practically negligible. The 
equations can be programmed very easily for rapid evaluation of single suspended 
stripline parameters for all practical purposes.

3.8.5  Edge-Coupled Suspended Microstrip Lines

Like edge-coupled microstrip and strip transmission lines, edge-coupled suspended 
strip lines are also used in various millimeter-wave filters, couplers, and hybrids. 
The cross-sectional shape of a pair of edge-coupled suspended striplines is shown 
in Figure 3.38(b). Such coupled lines support two distinctive modes called the even 
and the odd modes, as in coupled microstrip and striplines. The pertinent param-
eters of the modes are given by the following analytical equations [56]:
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In the above equations, the capacitance 
0

0

air
e

o

C 
  

 for the completely air-filled and homo-

geneous stripline is obtained by using (3.259) through (3.264) and εr = 1.

3.8.6  Broadside-Coupled Suspended Striplines

The cross-sectional shape of a broadside-coupled suspended stripline is shown in 
Figure 3.39. It is extensively used in the realization of quasi-planar millimeter-wave 
high-pass filters and very tight couplers. The even- and odd-mode characteristic 
impedances are given by [57]
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where the characteristic impedances 0
a
eZ  and 0

a
oZ  of the corresponding homogeneous 

broadside-coupled air-filled stripline are obtained from (3.128) through (3.131) 
and εr = 1. The even- and odd-mode effective dielectric constants 0

s
eε  and 0

s
oε , respec-

tively, are given by

	 ( ) ( )0

1
1 1

2 2
s
o r r

q
ε ε ε= + + − 	 (3.269)

where the filling factor q is given by

	 cq q q∞= 	 (3.270)

Figure 3.39  Broadside-coupled suspended microstrip line.
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The above equations offer an accuracy of 1% when compared with results from 
full-wave analysis for εr ≤ 16, S/b ≤ 0.4, and W/b ≤ 1.2. Figure 3.40 shows the 
graphical representation of the above equations.

3.8.7  Microstrip and Suspended Stripline Discontinuities

As in stripline circuits, discontinuities in microstrip and suspended striplines play 
significantly important roles in microwave planar integrated circuits. The types of 
discontinuities and their lumped element equivalent circuits are the same as those 
of their stripline counterparts shown in Figure 3.24. From the early 1970s to the 
late 1980s, closed-form equations were used for the characterization of microstrip 
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discontinuities. As well, to this day no closed-form model for suspended stripline 
discontinuities exists. However, the existing closed-form equations for microstrip 
discontinuities are purely empirical in nature and have very limited accuracy and 
range of validity with regard to frequency and structural parameters. Fortunately, 
the advent of highly accurate full-wave EM field solvers and cheaper and faster 
computers has completely eliminated the need for closed-form models. The scatter-
ing matrix of any multilayer planar transmission can be characterized in no time us-
ing affordable full-wave solvers. Figure 3.41 and 3.42 show the three-dimensional 
(3-D) view of a microstripline step junction and the computed scattering matrix, 
respectively. The added advantage of a full EM analysis-based approach is that it 
also characterizes 3-D discontinuities in multilayer planar transmission lines. 

One has to keep in mind that the existing closed-form empirical models for 
microstrip discontinuities are valid not only with poor accuracy but also do not ac-
count for the enclosure effects. Use of full-wave solvers offers a complete picture of 

Figure 3.40   (a) Characteristics of broadside-coupled suspended microstripline, and (b) effective 
dielectric constant. (From [56], reprinted with permission from the IEEE.) 
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not only a single discontinuity but also the interactions among more than the same 
or different type of discontinuities.

3.9  Single-Conductor Closed Transmission Lines

3.9.1  Hollow Metallic Waveguides

Hollow metallic tubes, usually with a rectangular or circular cross section, are ide-
ally suited for high-power and low-loss microwave applications. Such transmission 
lines are called waveguides. Due to the absence of any center conductor, wave-
guides support only TE and TM modes. Depending on the cross-section geometry 
of the waveguides, shown in Figure 3.43(a), simultaneous existence of two different 
modes with the same phase velocity is possible. Such modes are called degenerate 
modes. In multimoded waveguides more than one mode is allowed to propagate 
simultaneously. Due to the non-TEM nature of the supported mode, the waveguide 
exhibits a high-pass-like frequency response. Also due to the nonuniqueness of the 
voltage and current definitions, the characteristic impedance, Z0, of a waveguide 
cannot be defined uniquely. Z0 may be defined in terms of the voltage-current ratio, 
the power-current ratio, or the power-voltage ratio, as shown below.

Figure 3.41  Microstripline step discontinuity (substrate thickness = 2000 µm, εr = 2.22).

Figure 3.42  Frequency response of microstrip step discontinuity shown in Figure 3.41 as computed 
by EM3DS [58]. Computation time: 2.0 seconds.
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In the above equations, the definitions of the voltage and current are somewhat 
arbitrary, leading to different values of the characteristic impedance. Following the 
above definition, we get for the fundamental TE10 mode of a rectangular wave-
guide, the expressions given in Section 2.1. For a detailed derivation of waveguide 
field expressions, the reader should see any standard text book on electromagnetics 
engineering [59]. For ready reference, such expressions for rectangular and circular 
waveguides are shown in Tables 3.6 and 3.8, respectively [60].

Figure 3.44 shows the sequence in which various modes come into existence as 
the operating frequency is raised in a rectangular waveguide. For the TEmn mode, 
the attenuation constant in a rectangular waveguide is given by

Figure 3.43   (a) Rectangular waveguide, and (b) circular waveguide.
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Table 3.6  TE and TM Mode Fields of a Rectangular Waveguide
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Figure 3.44  Mode sequence in a rectangular waveguide.
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where Rs is the surface resistance and η0 = 120π Ω is the free space impedance. ε0n 
= 1 for n = 0 and 0 otherwise. For the fundamental TE10 mode, the equation for 
attenuation constant reduces to
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For a TM mode, the attenuation constant is given by
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The eigenvalue problem for the TE and the TM modes of a rectangular waveguide 
satisfies the following Helmholtz’s equations 

	 2 2 0xy mn mn mnk∇ Φ + Φ = 	 (3.283)
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on the waveguide walls. The solutions to (3.282) is given by
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for the TE and the TM modes, respectively. The corresponding electric and mag-
netic field components are shown in Table 3.6 [60,61].

For a normalized mode the following condition holds:
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where S is the cross-sectional area of the waveguide and the corresponding mode 
field is given by
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The cutoff wavenumber is given by
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and the phase or propagation constant is 
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Below the cutoff frequency the propagation constant is an imaginary quantity
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The corresponding electric and magnetic field components of the TE and TM 
modes of a circular waveguide are derived from (3.282). For a circular waveguide 
the mode functions are given by
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The corresponding electric and magnetic field components are shown in Table 3.8 
[60,61] and
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The pair of indices m and n gives the number of half-cycle field variations in the Φ 
and r directions, respectively, and xmn and mnx′  are the nth zeros of the Bessel func-
tion Jm(x) and the first derivative ( )mJ x′ , respectively. Tables of these functions can 
be found in [27]. Table 3.7 shows the normalized cutoff frequencies of circular 
waveguide. Figure 3.45 shows the mode sequence of a circular waveguide.
The cutoff wavelengths of circular waveguide modes can be obtained from
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The dominant mode of a circular waveguide is the TE11 mode. The cutoff wave-
length of the dominant mode is given by
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Table 3.7  Normalized Cutoff Frequencies 
of a Circular Waveguide

fc/fc11 Mode m n ′/mn mnx x

1.000 TE 1 1 1.841

1.306 TM 0 1 2.405

1.659 TE 2 1 3.054

2.081 TM 1 1 3.832

2.081 TE 0 1 3.832

2.828 TE 3 1 4.201

Figure 3.45  Mode sequence of a circular waveguide.
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where , ,andTE TM
c mn c mnk k  are the TE and the TM mode cutoff wavenumbers. The cor-

responding propagation constants are obtained by combining (3.293) through 
(3.295) with (3.288) or (3.289). εr and µr are the dielectric constant and the relative 
permeability, respectively, of the material completely filling the waveguide. For an 
air-filled guide, εr = µ = 1.

In Table 3.8 the mode amplitude Φmn is given by
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Table 3.8  TE and TM Mode Fields of a Circular Waveguide
Field 
Component TEmn TMmn
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where the roots xmn and mnx′  of the equations J(xmn) = 0 and ( )mnJ x′ ′  respectively, are 
given also in closed form by [62]
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	 (3.300)
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3.9.2  Characteristic Impedance of a Circular Waveguide

As in a rectangular waveguide, the definition of characteristic impedance of a mode 
in a circular waveguide is not unique. One based on power-current definition for 
the dominant TE11 mode is given by
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	 (3.302)

while the wave impedance of a circular waveguide, which is a uniquely defined 
parameter, is given by
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	 (3.303)

3.9.3  Attenuation in a Circular Waveguide

The TE mode attenuation constant due to conductor loss in a circular waveguide 
is given by
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and for TM modes
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The attenuation constant of the dominant TE11 mode of a circular waveguide is 
given by
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A plot of (3.306) is shown in Figure 3.46 and compared with (3.282) for a rectan-
gular waveguide. It can be seen that the dominant mode conductor loss of a circu-
lar waveguide is much lower than that of a rectangular waveguide of comparable 
dimensions. Figure 3.47 shows the frequency dependence of conductor Q of rect-
angular and circular waveguides. Analytical equations for the plots are as follows.

Rectangular waveguide:
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	 (3.307)

Circular waveguide:

Figure 3.46  Attenuation in rectangular and circular waveguides.
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Figure 3.47  Frequency dependence of Q-factor in rectangular and circular waveguides.

Table 3.9  Design Data of Industry Standard Waveguides

Source: [63].
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where all dimensions are measured in inches. Equations (3.307) and (3.308) ignore 
the effects of surface roughness of the waveguide walls1 [63]. However, such rough-
ness of the walls plays a significant role in waveguide conductor loss and conductor 
Q. Table 3.9 shows the design data of industry standard rectangular waveguide.

3.9.3.1  Attenuation Caused by Dielectric Loss in a Waveguide 

	 ( )27.3tan
dB unit lengthg

d

λδ
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λ λ

 
=    	 (3.309)

where tanδ is the loss tangent of the dielectric material completely filling the wave-
guide, λ is the operating wavelength, and λg is the guide wavelength. The unloaded 
Q-factor of waveguide is given by
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	 (3.310)

where Qc is the conductor Q-factor and Qd is the dielectric Q-factor. Qd depends 
on the dielectric loss only and is given by
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and 
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	 (3.312)

Using m = 1 in (3.307), for a completely air-filled copper waveguide, the equation 
for the dominant TE10 mode becomes
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1.	 Q factor degrades by the factor [1+(2/π)arctan(1.4(∆/δs))], where ∆ is the surface roughness and δs is the 
skin depth of the material of the wall.
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where a and b are in inches.

3.9.4  Maximum Power-Handling Capability of a Waveguide

The maximum peak power-handling capability of a rectangular waveguide support-
ing the TEmn mode, shown in Figure 3.48, is given by

	

2 2 2 2
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max max
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mn

m n

m n b a
a b n mab

P E

β

η ε ε

          + +                       =
	 (3.314)

where Emax is the breakdown electric field in the material filling the waveguide. For 
dominant TE10 mode in an air-filled waveguide (Emax = 73.66 kV/inch), (3.314) 
assumes the form 

	 max( ) 3.6
g

P MW ab
λ

λ
= 	 (3.315)

where a and b are in inches. The maximum average power-handling capability of a 
particular mode is obtained by multiplying the maximum peak power by the duty 
cycle of the wave. For example, in an X-band waveguide a = 0.90″, b = 0.40″, λ = 
1.180″, and λg = 1.560″. Substitution of these values into (3.289) yields Pmax = 0.98 
MW. That is the peak pulse power of the fundamental mode (TE10) that can propa-
gate through the waveguide before an electric breakdown occurs. If we assume the 
pulse is repetitive with a 2% duty cycle, then the maximum average power-handling 
capability is 19.6 kW. Note that although there is only the vertical component of 
the electric field in TE10 mode in a rectangular waveguide in which a > b, Pmax is 

Figure 3.48  Position of waveguide for heat transfer relations.
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also a function of the a dimension. However, in high average power microwave sys-
tems, average power rating should be considered from a different point of view. For 
very high power waveguide structures the factor governing the average power rat-
ing is the specified rise in waveguide temperature. Let us reconsider (3.282) for the 
fundamental mode (TE10) mode of a rectangular copper waveguide at 20°C [64]:
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	 (3.316) 

where

a = the wide inner dimension of the waveguide in meters;

b = the narrow inner dimension of the waveguide in meters;

λ = the operating wavelength in meters;

λc = 2a, the cutoff wavelength in meters.

The average power rating of the waveguide is

	 1.271av
c

q
P

α
= 	 (3.317)

where q is the rate of heat transfer and is assumed to be composed of thermal con-
vection and thermal radiation, or in other words

	 Btu hrc rq q q= + 	 (3.318)

	 ( )
5
4

4 4/ /

0.708 0.717
Btu/hr/ftb a

c

A A
q T

b a

 
= ∆ + 

 
	 (3.319)

	 Aa = (a′×1) ft2 and Ab = (b′×1) ft2	

	 ( )10 4 45.19 10 Btu/hr/ftr t w aq A T T−= × − 	 (3.320)

∆T = Temperature differential = Tw – Ta

Tw = Wall temperature of the waveguide

Ta = Ambient temperature
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a′= Outer wide dimension of the waveguide

b′= Outer narrow dimension of the waveguide

At = 2(Aa + Ab) = Total outer surface area of 1ft of waveguide in sq ft

An approximate first power equation for heat transfer is

	 ( ) Btu/hr/ftrc t w aq h A T T= − 	 (3.321)

where hrc is combined radiation and convection conductance  in Btu/hr/(sq.ft)°F.
The above equations describe the average power-handling capability when the 

waveguide is perfectly matched, or in other words, no voltage standing-wave exists 
on the line. However, existence of mismatch will give rise to high current points 
and localized high-temperature zones. Hence one should define a derating factor 
for the extra temperature rise. There are two possible scenarios to be considered in 
this context. 

Case 1: Equal power delivered to either matched or mismatched loads. This 
case represents the derating factor for the condition where the same amount of 
power is transferred to the matched or the mismatched load. This is useful when 
the transmitter is transmitting power to a matched or a mismatched antenna. In 
that case the extra rise in temperature is obtained from
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	 (3.322)

where

Ac = cross-sectional area of the waveguide in square feet

σth = thermal conductivity of waveguide walls

S = VSWR

and

λ = is the wavelength in feet

The corresponding derating factor is

	
1S

T
DF

T
∆

=
∆

	 (3.323)

Case 2, where not equal power but equal wave amplitudes are delivered to the 
matched and the mismatched loads. Such a situation is significant when the trans-
mitter faces a balanced duplexer circuit, as shown in Figure 3.49, or a power equal-
izer circuit where the reflected wave does not affect the loading of the transmitter; 
for example, in a duplexer circuit the net power delivered to the mismatched load 
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(TR tube) approaches zero when the duplexer is in the transmit condition. In that 
case, the extra temperature rise due to mismatch is given by

	 ( )
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2 1 2 1
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rc c

c rc c
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T q

h A SS kA h A
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 
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	 (3.324)

The corresponding derating factor is
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T
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T
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=
∆

	 (3.325)

In the past, plotted curves were developed for specific waveguide dimensions, mate-
rials, and temperature changes for determination of average power-handling capa-
bility of a waveguide. Since the equations involve too many variables it is impossible 
to plot general curves for any types of waveguides, materials, and temperature 
change. However, computer programs are available for estimation of the average 
power-handling capability of a rectangular waveguide for a given set of parameters.

3.9.5  Power-Handling Capability of a Circular Waveguide

The maximum peak power that can be handled by the dominant TE11 mode of a 
circular waveguide is 
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1582.3

a
P E
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π β
= 	 (3.326)

where Emax is the breakdown field of the medium homogeneously filling the wave-
guide. The maximum sustainable power for the TM01 mode is 
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01 01
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5631 TM TM

a k k
P E
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π  

= −   	 (3.327)

Figure 3.49  Transmitter delivering power to a duplexer.
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The TE01 mode in a circular waveguide is of special interest because its field config-
uration and the symmetric mode pattern results in an attenuation characteristic that 
is very useful in communication links. The conductor loss of a circular waveguide’s 
TE10 mode decreases with frequency. The maximum power that can be handled by 
the TE01 mode of a circular waveguide is 

	
2

201
max max Watts

3149
a

P E
k

βπ
= 	 (3.328)

as in rectangular waveguide the maximum average power-handling capability of a 
circular waveguide is given by (3.317). However, the combined heat transfer coef-
ficient hrc for a circular waveguide has to be obtained using the same procedure as 
for a rectangular waveguide. Equations (3.315), (3.326), (3,327), and (3.328) are 
very useful in determining the power-handling capabilities of waveguide filters [15].

3.9.6  Discontinuities in Waveguides and the Circuit Parameters

As mentioned before, no transmission line is useful in microwave design without a 
discontinuity in it and waveguides are no exception. An accurate result for a step 
discontinuity in waveguide is very important because it can be shown that any 
discontinuity in a waveguide is a combination of several basic step discontinuities. 
For example, an iris in a waveguide is a combination of two back-to-back step 
discontinuities. The history of waveguide discontinuity dates back to the 1940s 
and the most significant work in this area was done at the Massachusetts Institute 
of Technology (MIT) radiation laboratory, during World War II, as a part of radar 
research. An excellent account of the work is documented in the classic book by 
Nathan Marcuvitz, Waveguide Handbook, which forms a part of the famous Ra-
diation Laboratory series. Due to lack of digital computers, Marcuvitz [62], Collin 
[61], Lewin [65], and others developed analytical expressions for waveguide dis-
continuities using variational calculus, conformal mapping and static field methods. 
However, the analytical equations are limited in the sense that they do not account 
for interactions among various waveguide discontinuities that are in close proxim-
ity of one another in an actual physical component. The main types of waveguide 
discontinuities are shown in Figure 3.24. Consider the H-plane step discontinuity 
in a rectangular waveguide in Figure 3.50.

At the junction plane
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Figure 3.50  Rectangular waveguide step discontinuity and the equivalent circuit.
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3.9.7  Waveguide Asymmetric H-Plane Step

A waveguide H-plane asymmetric step and its equivalent network are shown in 
Figure 3.51. The reactance X is given by (3.329). However, the parameters R1, R2, 
T, and N11, N22, and N12 for the asymmetric step are as follows:
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	 (3.347)

Figure 3.51  Rectangular waveguide asymmetric step discontinuity and its equivalent circuit.
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	 (3.348)

The above equations and the equivalent circuit is valid within 1% over the range 
λ > 2a′and 1 < λc /λ < 3. The second condition guarantees the validity over the full 
fundamental mode band of the larger guide. However, the first one implies that 
the equations are valid for apertures only. Outside the range the inaccuracy may 
shoot up to 10%. The above equations were derived under the assumption that the 
smaller guide is infinitely long, which means the higher-order modes excited at the 
discontinuity decay to zero amplitude at a point beyond the step junction. There-
fore, we may conclude that the closed-form equations for waveguide discontinuities 
are of limited validity. Hence, although closed-form equations exist for virtually 
all types of waveguide discontinuities, we will not present those equations in this 
treatise. 

3.9.8  Mode Matching Method and Waveguide Discontinuities

Today the best way to analyze a waveguide discontinuity is by using the mode-
matching method. This powerful and simple-to-implement CAD approach defeats 
any other approach in terms of computation speed, accuracy, and flexibility. In ad-
dition, when the mode-matching method is combined with the boundary element 
method (BEM), any arbitrarily shaped waveguide discontinuity can be analyzed. 
The basic method is as follows. Consider the junction between two rectangular 
waveguides of different sizes, as shown in Figure 3.52.

 Figure 3.52  EH-plane step junction between two rectangular waveguides.
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Let us assume that there exists a pure fundamental TE10 mode in guide one and 
it propagates in the z-direction and eventually strikes the discontinuity between 
waveguides 1 and 2. This generates all higher-order modes in both waveguides. The 
generated waves form a bunch of reflected waves in guide 1 and transmitted waves 
in guide 2. The mode-matching method generates the overall multimode scattering 
matrix of the system. However, in most cases we are interested in the fundamental 
mode-scattering matrix only and fortunately all higher-order modes in both guides 
decay to insignificant values within a short distance from the junction. The method 
was first reported by Alvin Wexler [66] in 1967. We describe the method without 
going into the derivations of the pertinent equations [67,68]. The method is as 
follows.

The amplitude of the mnth mode’s electric field in waveguide i(i = 1,2) due to 
a unit amplitude pqth mode in waveguide j(j = 1,2) is by definition the (mn, pq) 
element of the scattering matrix Sij. Moreover, for the smaller waveguide (guide 2):

	 [ ] [ ] [ ] [ ]( ) [ ] [ ]( )[ ]11

22 2 02 2 02 2 2S T Y Y Y Y T
−−= + − 	 (3.349)

where [Ti] (i = 1,2) is a diagonal matrix which defines the equivalent voltage column 
vector Vi of guide i in terms of the E-field mode amplitude vector ai of the same 
guide.

	 i i iV T a= 	 (3.350)

[Y02] is the characteristic admittance matrix of guide 2 and [Y2] is the input admit-
tance matrix of the junction as seen from guide 2. The principle of conservation of 
complex power shows that

	 [ ] [ ] [ ] [ ] [ ][ ]1 1

2 2 1 22
T TT

Y T H P H T
− − =   	 (3.351)

where [P1] is the diagonal matrix whose mnth element represents the complex 
power carried by the unit amplitude mnth mode of guide 1. The elements of the 
coupling matrix [H] are given by 

	
1 2

*
01

1

.
a

mn pqS
mn mn

mn

e e
H Y da

p
=

∫∫
 

	 (3.352)

where imne


 (i = 1,2) is the transverse component of the mnth mode electric field in 
guide i at z = 0, and pimn (i = 1,2) is the complex power carried by the same mode. 
The integration is carried out over the cross-section Sa of the smaller waveguide. 
The remaining submatrices of the multimode scattering matrix can be obtained 
from 

	 [ ] [ ] [ ] [ ]( )22 22S H U S= + 	 (3.353)

	 [ ] [ ]1*
21 2 12 1

TS P S P
−

   =     	 (3.354)
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	 [ ] [ ][ ] [ ]11 22S H S U= − 	 (3.355)

Let the modes in each waveguide be divided into TE and TM modes and sequen-
tially ordered. The matrix [H] can then be subdivided into four submatrices

	 [ ]
, ,

, ,

TE TE TE TM

TM TE TM TM

H H
H

H H

        =
        

	 (3.356)

where the superscript TE-TE stands for coupling between the TE modes in guide 1 
and TE modes in guide 2. The elements of various matrices are given by

	
2 2

, 1 4 2 3
1 2 1 2

TE TE
mn pq

nq mp
H k I I I I

b b a a
π π−  

= + 
 

	 (3.357)

	
2 2

, 1 4 2 3
1 2 1 2

TE TM
mn pq

np mq
H k I I I I

b a a b
π π−  

= − 
 

	 (3.358)

	
2 2

, 1 4 2 3
1 2 1 2

TM TE
mn pq

mq np
H k I I I I

a b b a
π π−  

= − 
 

	 (3.359)

	
2 2

, 1 4 2 3
1 2 1 2

TM TM
mn pq

mp nq
H k I I I I

a a b b
π π−  

= + 
 

	 (3.360)

where the integrals Ii(i = 1,2,3,4) are defined as

	
( )2

1
1 2

(
cos cos
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h a
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p x hm x
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a a
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= ∫ 	 (3.361)

	
( )2
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(
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q y hn y
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= ∫ 	 (3.362)

	
( )2
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x
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a a
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+ −

= ∫ 	 (3.363)
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( )2
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1 2

(
sin sin

y

y

h b
y

h

q y hn y
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b b

ππ
+ −

= ∫ 	 (3.364)

The above integrals can be written as
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	 (3.368)

where 1 2 1 2
1 2 1 2

, , ,
m p n q

u u v v
a a b b

π π π π
= = = =

There are some special cases that need to be considered. Those are when m or n 
= 0 in guide 1 and p or q = 0 in guide 2. For an entirely H-plane discontinuity, such 
a case does not exist because waveguides do not support TEm0 mode with m = 0. 
Therefore, under the above special conditions (3.365) to (3.368) assume the forms
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
=   + −  

	 (3.370)

Each of the four left-hand side matrices in (3.349) and (3.353) through (3.355) has 
the form
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	 (3.371)

where the subscripts i and j denote the port numbers and the first and the second 
numerals within parenthesis on the right-hand side denote the mode numbers in 
guide 1 and guide 2, respectively. For example, if i = 1 and j = 2 then the term S12 
(2,3) is the ratio of the amplitude of the third mode at port 1 due to the unit incident 
complex amplitude of mode 3 in port 2. Therefore, if the first mode or mode 1 in 
either guide is selected as the fundamental TE10 mode, then the fundamental mode 
reflection and transmission coefficients are S11(1,1) and S21(1,1), respectively. For a 
detailed account of the mode-matching technique, the reader should to refer to [69].

The elements of the coupling matrix [H] in a mode-matching analysis can be 
obtained as closed-form analytical expressions only if the cross-sectional shapes 
of the two waveguides forming the junction are regular (rectangular, circular, etc.) 
However, in many situations the designer may have to use junctions of nonrectangu-
lar shaped waveguides. For any such shape, the expressions for cutoff wavelengths 
and the corresponding mode field do not have any closed-form expressions. In 
any such case one has to use more generalized techniques and often numerical ap-
proaches such as the two-dimensional finite element method or boundary element 
method for computation cutoff wavelengths and impedances of the fundamental 
and higher-order modes. Recently a semianalytical approach based on the use of 
two-dimensional superquadratic functions has gained considerable importance.

Consider the junction between two waveguides, the cross-sectional shapes of 
which can be described by generalized superquadratic functions, as shown in Fig-
ure 3.53.

The first step in a generalized mode-matching analysis is to obtain the TE and 
TM mode cutoff frequencies and the corresponding mode fields of the two wave-
guides. That is accomplished in the following way [69,70].

The mode field is expressed as a series polynomial

	 ( )
1

( , ) ,
m

i i
i

u x y C x yf
=

= ∑ 	 (3.372)

where the basis functions fi are defined for TM mode as 

	 ( ) ( ) ( ), , ,i i ix y x y f x yf ϕ= 	 (3.373)

and for TE modes as

	 ( ) ( ), ,i ix y f x yf = 	 (3.374)
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The function fi are chosen such that the Dirichlet boundary condition (Ez = 0) is au-
tomatically satisfied on the boundary of the waveguide cross section. The Neuman 

boundary condition 0zH

n

∂ =  ∂
 is automatically satisfied by the function in (3.374). 

Once the basis functions have been defined, the waveguide cutoff frequencies are 
obtained from the following matrix eigenvalue equation:

	 [ ][ ] [ ][ ]2T

cK C k M C= 	 (3.375)

The elements of the matrices [K] and [M] are defined as

	
f ff f∂ ∂ ∂ ∂

= + ∂ ∂ ∂ ∂ ∫∫ j ji i
ij S

k dxdy
x x y y 	 (3.376)

	 ij i jS
m dxdyf f= ∫∫ 	 (3.377)

respectively, where S is the cross section of the waveguide. 
For t even

	 ( ) 2,
t

r
if x y x y= 	 (3.378a)

and for t odd

	 ( )
1

2,
t

r
if x y x y

−

= 	 (3.378b)

where 

	 ( ) ( ) 21 , 1r Int i t i r= − = − − 	

Figure 3.53  Cross section of a generalized waveguide step junction.
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Once the eigenfunctions for the various modes are completely known, the compo-
nent matrices of the coupling matrix [H] are computed from
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2 1
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c j c i
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H dl
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∂∫ 	 (3.382)

3.9.8.1  Analysis of an Iris

An iris in a waveguide is a back-to-back combination of two-step discontinuities, 
as shown in Figure 3.54. For an iris of finite thickness there is a finite length of 
uniform waveguide between the two back-to-back steps. The cross-sectional dimen-
sions of the interposed waveguide are those of the smaller waveguide. The overall 
scattering matrix consists of three separate scattering matrices. [SA], [SB], and [SC] 
are the scattering matrices of the junction between guide I and II, guide II as a 
uniform transmission line, and the junction between guide II and III, respectively. 
The scattering matrices of the junction between I and II and that of guide II are 
combined using

	 [ ] 1

11 11 12 11 22 11 21
AB A A B A B AS S S U S S S S

−
              = + −               	 (3.383)

	 [ ] 1

12 12 11 22 12
AB A B A BS S U S S S

−
          = −           	 (3.384)

	 [ ] 1

21 21 22 11 21
AB B A B AS S U S S S

−
          = −           	 (3.385)

	 [ ] 1

22 22 21 22 11 22 12
AB B B A B A BS S S U S S S S

−
              = + −               	 (3.386)

The overall scattering matrix [SABC] is obtained by using the above equations one 
more time and replacing the superscripts A with AB and B with C in the above 
equations. The junction scattering matrices [SA] and [SC] are obtained from the 
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mode-matching analysis of the respective junctions. The scattering matrix of the 
uniform section of guide II of length t is given by 

	 [ ]
0
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TE
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         =      
	 (3.387)

where [LTE] and [LTM] are diagonal matrices of order MII and NII, respectively, as-
suming the MII TE modes and NII TM modes are considered in guide II.
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	 (3.389)

TE
iβ  and TM

kβ  are the propagations constants of the ith TE and the kth TM modes, 
respectively, in guide II. Usually, β1 is of the dominant mode, which means 1

TEβ  is 
the propagation constant of TE10 mode and 1

TMβ  is that of the TM11 mode in a 

Figure 3.54  An iris discontinuity in a waveguide and the scattering matrix combination steps.
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rectangular waveguide. 0    and [0] are rectangular null matrices of order (NII × MII) 
and (MII × NII), respectively.

In many situations guides I and II happen to be coaxial and of identical cross-
sectional dimensions. In those cases the scattering matrices of guide I and III are 
related as 
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21 12

11 22

A C

A C

A C
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S S

S S

S S

S S
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   =   
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	 (3.390)

Combining (3.356) to (3.359) with (3.363) gives

	[ ] [ ] [ ] [ ] [ ] [ ] [ ]
11

1

22 11 22 21 11 11 12
A A A A A AS S S S L S U L S L S L S

−
           = = + −             	 (3.391)

	 [ ] [ ] [ ] [ ] [ ] [ ] [ ]1

21 12 21 11 11 12
A A AS S S U L S L S L S

−
      = = −        	 (3.392)

3.9.8.2  Offset Step Junction

An offset step junction is shown in Figure 3.55. In such a step junction each wave-
guide is only partially contained in the other. However, the junction can be ana-
lyzed using the mode-matching technique by interposing an intermediate section of 
waveguide that fully contains both waveguides but has the length tending to zero in 
the limit, as shown in Figure 3.56. Due to such an assumption, the single-junction 
problem essentially becomes a two-junction problem involving three cascaded net-
works. Therefore, once we have computed the scattering matrices of the junctions 
as [SA] and [SC] and that of the intermediate section as [SB] given by (3.360), then 
we can use the cascading scheme in Figure 3.54 to obtain the overall scattering 
matrix of the junction.

3.9.9  Waveguide Discontinuity Analysis in General

The mode-matching method described above is well suited for any type of discon-
tinuity in a straight section of waveguide. However, there are a great multitude 
of applications where a large number of other types of waveguide discontinuities 
are used. Waveguide discontinuities can be divided into three categories, H-plane, 
E-plane, and EH-plane. The most efficient and general method for analysis of E- 
and H-plane discontinuities in a rectangular waveguide is a combination of the 
mode-matching method and the finite element method [71]. We will present a brief 
description of the method for H- and E-plane discontinuities.  For a detailed de-
scription of the method the reader is referred to the book by Pelosi et al. [72].



3.9  Single-Conductor Closed Transmission Lines	 133

3.9.10  Finite Element Modal Expansion Method

3.9.10.1  H-Plane Waveguide Discontinuities

Let us consider the general H-plane junction [72] (no variation in dimension in 
y-direction) of a rectangular waveguide, as shown in Figure 3.57. The junction is 
assumed to consist of a perfectly conducting wall whose contour is denoted by Γ0, 
while the region enclosed by Γ0 is denoted by Ω. There are N arbitrarily defined 
port reference planes Γk (k = 1, N). Each port is matched to an infinite waveguide 
whose cross-sectional dimensions are the same as those of the port. Now, if one 
more of the ports is fed with a TE10 mode only the TEm0 modes will be excited by 
the discontinuity and the electric field in the structure will have the Ey component 
only. Once the scattering has taken place, the general expression for the electric field 
at the kth port due to the incident field on the jth port is given by

	 ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
1

1
1

j j k k
mj zk k j j k k k j z

ywg m m
m

E x ke x e B e x eβ βδ
∞

−

=

= + ∑ 	 (3.393)

	 ( )
( )

( )
0

1
k

ywgk
ywg k

E
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∂
=

∂
	 (3.394)

Figure 3.55  Offset step junction.

Figure 3.56  Offset step junction with an intermediate section.
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where ( )k
me  is the orthonormal modal function of the TEm0 at the kth waveguide port:
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m k kk
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k m
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η π

β

 =    	 (3.395)

where k0 and η0 are the free space propagation constant and the wave impedance, 
respectively, and ( )k

mβ  is the propagation constant of the waveguide attached to the 
kth port. If the width of that waveguide is α(k) then
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 = −    	 (3.396) 

Since domain Ω has an arbitrary shape, the field inside it cannot be described by 
an analytic expression involving known functions. Hence, the field is obtained by 
numerically solving the scalar Helmholtz equation

	
2
0

1
0t t y r y

r

E k Eε
m

 
∇ ∇ + =   	 (3.397)

subject to the boundary conditions

	 00 onyE = Γ 	 (3.398)

and 

Figure 3.57  General rectangular waveguide H-plane multiport [72].
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Equation (3.397) can be solved using the finite element method [73], the bound-
ary element method [74], or any other method that can solve the two-dimensional 
Helmholtz equation. Today, a number of such solvers exist that are available either 
commercially [75] or on the Internet [76]. Quick_Fem [75] is one such a com-
mercially available solver that is specifically tailored for waveguide discontinuity 
problems.

3.9.10.2  E-Plane Waveguide Discontinuities

In an E-plane discontinuity [72] none of the port waveguides face any discontinu-
ity in the x-direction, as shown in Figure 3.58. As a result, if the ports are excited 
by the fundamental TE10 mode, only TE0n type higher-order modes are excited at 
the discontinuities. Also the only field in the x-direction is the hx field. The field 
problem in Ω is formulated in terms of hx, which satisfies the two-dimensional 
Helmholtz equation.

	 2 2 0t x t xh k h∇ + = 	 (3.400)

where 

	
2

2 2
0tk k

a
π = −   

	 (3.401)

We express the field in each of the port waveguides in terms of 1LSEx
n(n = 0,1…) 

modes only. This set of modes has sn Hx field with a sin(πx/a) type variation. 

Figure 3.58  General rectangular waveguide E-plane multiport [72].
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Therefore, the x-component of the magnetic field in the kth waveguide ( )k
xwgh , when 

the jth port is excited by the TE10 mode, or equivalently the 10LSEx  mode, can be 
expressed as 

	 ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )β βδ
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j j k
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h y h y e B h y e 	 (3.402)

where ( )k
nh , the 1LSEx

n  mode orthonormalized magnetic field in the kth port wave-
guide, is given by
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The propagation constant ( )k
znβ  and the normalization factor ( )k

nΛ  are given by

	 ( )
( )

2 2
2
0

k
zn k

n
k

a b

π π
β

   = − −       	 (3.404)

	
( )

( ) ( )
0

2

2
2k

n k k
zn tab k

η

β
Λ = 	 (3.405)

The associated boundary conditions for the E-plane discontinuities are
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	 (3.406)

and
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Once again, as in the H-plane case, (3.400) can be solved using any two-dimen-
sional numerical Helmholtz equation solver and Quick _FEM [77] is one of those 
software applications. Having solved (3.400) for hx, the other field components can 
be obtained by using Maxwell’s equations. However, one has to keep in mind ex = 
0. Then the other field components are obtained from
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The above technique is suitable for the analysis of any kind of either E- or H-plane 
discontinuity. However, out of that infinite number of waveguide discontinuities, 
some are more frequently used than the others. Figure 3.59 shows appearances of 
those discontinuity structures in several waveguide components.

We would like to mention at this point that E-plane counterparts of the H-
plane discontinuities shown in Figure 3.59 are also useful. Analyses of all such 
two-dimensional discontinuities and many other waveguide discontinuities can be 
efficiently done using the finite element modal matching method.

3.9.11  Typical Three-Dimensional Discontinuity in a Rectangular Waveguide 

Figure 3.60 shows an example of a typical three-dimensional waveguide discon-
tinuity. This is a very commonly used typical rectangular waveguide to a double-
ridged waveguide step junction. The mode-matching technique with superelliptic 
functions that represent the various shapes can be used to analyze the junction. 
Equations (3.349) to (3.356) and (3.372) to (3.382) can be used to calculate the 
overall multimode scattering matrix [70]. The pertinent ψ-functions needed for the 
mode-matching analysis are shown in Figure 3.60.

Ridged waveguides are also used in many applications where the knowledge of 
the fundamental mode cutoff frequency and the characteristic impedance is more 
than sufficient for an accurate prediction of the circuit behavior. For such cases 
only the closed-form equation for the fundamental mode parameters are required. 
Closed-form equations [78] exist for the fundamental mode cutoff wavelength and 
the characteristic impedance of a ridged waveguide for a symmetrically placed cen-
tered ridge. The equations are given by [78,79]

Fundamental mode cutoff wavelength:
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	 (3.410)

This formula is accurate to within ±1% in the following range of parameters: 0.01 
< d/b ≤ 1, 0 < b/a ≤ 1, 0  s/a ≤ 0.45. 

Characteristic impedance:
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Figure 3.59  Typical H-plane discontinuities: (a) power divider, (b) compensated T-junction for 
angled bend, and (c) physical discontinuity hardware. (Courtesty of Mr. D. F. Carlberg, M2GLOBAL, 
San Antonio, TX.)

Figure 3.60  Double ridge waveguide and the pertinent superellipse equations for mode-matching analysis.
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The above equation is based on the voltage-current definition of characteristic im-
pedance, where the voltage is the line integral of the electric field between the ridges 
at the center of the guide (x = a/2), while the current is the total longitudinal surface 
current on the top wall of the guide that includes the surface of the upper ridge. 
Equations (3.410) to (3.412) are also applicable to a single-ridge waveguide with 
the following interpretation. In the expression for the cutoff frequency (3.410), b 
is twice the height of the single-ridge guide and d is twice the spacing between the 
ridge and the bottom wall. The same interpretation goes for the characteristic im-
pedance (3.384) and (3.385). The computed impedance should be divided by two 
to obtain the impedance of the single ridge waveguide.

Since ridge waveguides are used in many passive waveguide components as 
transmission lines and resonators, the attenuation constant of a ridge waveguide is 
very important. An approximate expression for ridge waveguide attenuation has 
been given by Hopfer [79] and d is the skin depth in meters. The parameter of inter-
est is the bandwidth between the fundamental TE10 mode and the next higher-or-
der mode. If the waveguide and the excitation system are symmetric, then the TE20 
is not excited. As a result, the next higher-order mode becomes the TE30 mode. A 
relative bandwidth of 8 is achievable for s/a=0.5 and d/b=0.1. Note that the maxi-
mum relative fundamental-mode bandwidth achievable in a rectangular waveguide 
is 2. Table 3.10 shows the industrial specifications of ridged waveguides.
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where
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We will show in Chapters 5 and 6 how by properly cascading straight sections of 
empty waveguides, ridged waveguides, and step junctions very wide stopband low-
pass and band-pass filters are realized. 

This chapter has described the properties and design aspects of various trans-
mission lines used in RF and microwave filter design. In conclusion, we would like 
to mention that among many other important parameters of any transmission line, 
the most important one is the insertion loss or the attenuation factor. Figure 3.61 
shows the comparison of attenuations in various transmission lines used RF and 
microwave filter realizations.

Table 3.10  Ridged Waveguide Specifications 

[80] Source: EW & Radar Systems Engineering Handbook, Naval Air Systems Command, Washington D. C.
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C H A P T E R  4 

Low-Pass Filter Design

A low-pass filter is the most basic building block of a host of microwave passive 
components. Such components not only include any other type of filters such as 
high-pass, band-pass, and bandstop filters but also components like power dividers, 
couplers, hybrids, and matching transformers. Therefore, it is worthwhile to pres-
ent here a brief description of the theory of lumped element low-pass filters. The 
most primitive method of low-pass filter design is the image-parameter method [1]. 
However, the method suffers from a serious drawback of unpredictability of skirt 
selectivity beyond the edges of the passband. Modern network synthesis methods 
offer a low-pass design method, which is based on the concept of insertion loss and 
is very versatile in most respects [2].

4.1  Insertion Loss Method of Filter Design

Consider the terminated two-port network shown in Figure 4.1. Let us also assume 
that the terminating impedances Rg and RL are purely real quantities. According to 
the definition of normalized power-wave amplitudes, we can define
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The above normalized power-wave amplitude parameters are related via the follow-
ing equations (see Section 2.4):

	 1 11 1 12 2b S a S a= + 	 (4.5a)

	 2 21 1 22 2b S a S a= + 	 (4.5b)

or in matrix form

	 ] [ ] ]b S a= 	 (4.6a)

	 [ ] 11 12

21 22

S S
S

S S
 

=  
 

	 (4.6b)

If P1 and P2 are the power levels at ports 1 and 2 respectively, then

	
2 2

1 1 1P a b= − 	 (4.7)

	
2 2

2 2 2P a b= − 	 (4.8)

If the network is lossless, then the conservation of power requires

	
2 2 2 2

2 1 2 2 1 1 0P P a b a b− = − − + = 	 (4.9)

which in turn leads to the following equations for the scattering parameters

	
2 2 2 2

11 21 12 22 1S S S S+ = + = 	 (4.10)   

In actual practice Rg is the output impedance of the generator connected to port 1, 
as shown in Figure 4.2.

From the above network we obtain the following relationships:
The output power

Figure 4.1  Terminated two-port network.
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2

2
L

L

V
P

R
= 	 (4.11)

The input impedance

	 1

1
in

V
Z

I
= 	 (4.12)

The maximum available power from the generator under matched conditions is

	

2

4
g

m
g

E
P

R
= 	 (4.13)

From the definition of scattering parameters

	
2

1 1

1
11

2 21 0

2

2

g

g in g

L in ga

L

V R I

R Z Rb
S

V R Ia Z R
R

=

−

−
= = =+ + 	 (4.14)

	
2

2 2
21

1 0

2 g

g La

Rb V
S

a E R
=

= = 	 (4.15)

	 =2

21
L

m

P
S

P
	 (4.16)

The right-hand side of the above equation is the ratio of the power absorbed by the 
load and the maximum available power from the generator. This is also known as 
the insertion loss of the two-port network.

Let us consider the following example in Figure 4.3:

Figure 4.2  Two-port network with a generator.
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	 1

1

L
in

L

V sLR
Z

I sL R
= =

+
	 (4.17)

	 2
in g

in g

Z E
V

Z R
=

+ 	 (4.18)

Let us assume, without loss of generality, Rg = RL = 1 Ω and Eg = 1 volt (rms)

	 11

1 1
1 4 1

in

in

Z
S

Z s

− −
= =

+ +
	 (4.19)

Combining (4.15) and (4.19), we obtain

	
21

1
4 1

S
s
−

=
+

	 (4.20)

Since the network is symmetrical, the overall scattering matrix is given by

	 [ ] 1 41
4 14 1

s
S

ss

− 
=  −+  

	 (4.21)

4.2  Belevitch Matrix and Transfer Function Synthesis

Belevitch [3] showed that the scattering matrix of a loss-less passive two-port net-
work has the general form

	 [ ] ( )
( ) ( )
( ) ( )*

1 f s g s
S

g s f sh s ξ

 
=  − 

	 (4.22)

Figure 4.3  Network with one shunt inductor.
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where f(s), g(s), and h(s) are real polynomials of s, * denotes the complex conjugate, 
and ξ = ±1. The (+) sign is used when g(s) is an even polynomial and the (–) sign is 
used otherwise. Also, h(s) is strictly a Hurwitz polynomial and the conservation of 
power is guaranteed by the following equation:

	 * * *( ) ( ) ( ) ( ) ( ) ( )h s h s f s f s g s g s= + 	 (4.23)

Comparing (4.6b) and (4.23) gives

	 11

( )
( )

( )
f s

S s
h s

= 	 (4.24)

and 

	 21

( )
( )

( )
g s

S s
h s

= 	 (4.25)

We define the characteristic function ϑ(s) as

	 11

21

( )
( )

( )
S s

s
S s

ϑ = 	 (4.26)

Combining (4.26) and (4.10) gives

	 ( )
( )

2

21 2

1

1
S s

sϑ
=

+ 	 (4.27)

The above equation shows how the characteristic function is related to the insertion 
loss of the two-port network. We are now in a position to reveal the significance of 
the characteristic function and how it enables us to synthesize the two-port network 
on the basis of its insertion loss response in the frequency domain. Equation (4.27) 
in the radian frequency domain assumes the form

	 ( )
( )

2

21 2

1

1
S j

j
ω

ϑ ω
=

+ 	 (4.28)

which can also be written as

	 ( ) 2

21 2

1
1 ( )

S j
F

ω
ω

=
+

	 (4.29)
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where the function F is known as the approximation function. The form of F can be 
chosen based on the type of low-pass filter response desired.

4.2.1  Butterworth Approximation

The most fundamental and the simplest such function is the Butterworth approxi-
mation function. The function has the form [4]

	 2 2( ) NF ω ω= 	 (4.30)

where N identifies the degree of the approximation function. N plays a role in the 
skirt selectivity or the attenuation roll off of the filter in the stopband and the varia-
tion of the insertion loss in the passband. Combining (4.29) and (4.30) gives

	 ( ) 2

21 2

1
1 NS jω

ω
=

+
	 (4.31)

Figure 4.4 shows a graphical representation of (4.31). The Butterworth response is 
also known as the maximally flat response.

The locations of the poles of a Butterworth filter in the complex frequency 
plane or s-plane are obtained by equating the denominator of the equation 

	 ( )
( )

2

21 2

1

1
NS j

js
ω = = ∞

+ − 	 (4.32a)

or

	 ( )2
1 0

N
js+ − = 	 (4.32b)

The roots of the above equation are given by

	 sin cos ; 1,2, 2Mj
M M M M Ms je j j M Nθ θ θ s ω= = − + = + =  	 (4.33)

Figure 4.4  Normalized Butterworth response.
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with

	 ( )2 1

2M

M

N

π
θ

−
= 	 (4.34)

Figure 4.5 shows the locations of the roots of a third-order (N = 3) Butterworth 
filter in the complex frequency or s plane.

According to (4.33) and (4.34), the roots are

	

= −

= − +

= − −

1

2

3

1

1
3

2
1

3
2

s

s j

s j

	 (4.35a)

and 

	

= +

= + +

= + −

4

5

6

1

1
3

2
1

3
2

s

s j

s j

	 (4.35b)

Therefore, (4.32a) can be written as

	 ( )( )( ) ( )( )( )
*

21 21
1 2 3 4 5 6

1 1
S S

s s s s s s s s s s s s
= •

− − − − − − 	 (4.36)

In order to satisfy the realizability conditions we consider the poles in the left half 
of the complex frequency or s plane and obtain

Figure 4.5  Poles of N = 3 Butterworth filter.
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	 ( )( )( )21 2 3
1 2 3

1 1
1 2 2

S
s s s s s s s s s

= =
− − − + + + 	 (4.37)

Therefore, from (4.22) and (4.37), we have 

	 2 3( ) 1 2 2h s s s s= + + + 	 (4.38)

and

	 ( ) 1g s = 	 (4.39)

	 1ξ = + 	 (4.40)

Combining (4.39), (4.40) and (4.23) gives

	 * * * 6 6 3 3(1 ) 1 ( )(( ) )ff hh gg s s s s= − = − − = − = − 	 (4.41)

or

	 3f s= 	 (4.42)

From (4.24), we get

	 ( ) ( )
( )

3

11 2 31 2 2

f s s
S s

g s s s s
= =

+ + +
	 (4.43)

At this point we assume (4.31) to be the frequency response of a low-pass filter 
whose output/input power ratio drops to half of the value at zero frequency of the 
flat passband at ω = 1 radian/sec. We also assume that the actual filter is a two-
port passive network, which is terminated by a 1W real impedance at both ends, as 
shown in Figure 4.2 with Rg = RL = 1W. Then the input impedance of the network 
is given by

	 ( ) ( )
( )

2 3
11

1 2
11

1 1 2 2 2
1 1 2 2

S s s s s
Z s

S s s s

+ + + +
= =

− + +
	 (4.44)

Equation (4.44) representing the input impedance of the terminated passive two-
port can be realized by using inductors and capacitors and adopting either Cauer-I 
or Cauer-II synthesis techniques [5]. Before we proceed with the demonstration of 
the synthesis procedure, the driving point impedance Z1(s) and the corresponding 
input reflection coefficient have to fulfill certain conditions known as positive re-
alizability condition, as mentioned in Chapter 1 (Section 1.5). The properties are 
summarized in Table 4.1.
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4.2.2  Cauer Synthesis

Equation (4.44) shows that the input impedance of a two-port low-pass filter to be 
synthesized can be represented in general by a rational function:

	 ( ) ( )
( )

( ) ( )
( ) ( )

1 1
1

2 2

N s m s n s
Z s

D s m s n s

+
= =

+
	 (4.45)

In the above equation m1(s) and n1(s) are the even and odd parts of the numera-
tor polynomial and m2(s) and n2(s) are the even and odd parts, respectively, of the 
denominator polynomial. From (4.45), we get

	 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 2 1 2
2 2
2 2

Re
j

m j m j n j n j
Z j Ev Z s

m j n jω

ω ω ω ω
ω

ω ω

−
= =

−
	 (4.46a)

	 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )ω

ω ω ω ω
ω

ω ω

−
= =

−
1 2 1 2

2 2
2 2

Im
j

n j m j m j n j
Z j Odd Z s

m j n j
	 (4.46b)

Since Z1(s) is the input or driving point impedance of a passive lossless network, it 
has no resistive part or real part, or ReZ(jω) is zero for all ω. Therefore, equating 
the right-hand side of (4.46a) to zero gives the following possibilities:

1.	 ( ) ( )1 2 0m j n jω ω= =

*Source: From Peter M. Kelly, Ph.D thesis, California Institute of Technology, 1960.

Table 4.1  Positive Reliazibility Conditions for Z1(s) and S11(s)
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2.	 ( ) ( )1 2 0n j m jω ω= =
3.	 ( ) ( ) ( ) ( )1 2 1 2m j m j n j n jω ω ω ω=

From the above possibilities we draw the following conclusion:
Either

	 ( ) ( )
( ) ( ) ( )

( )or
m s n s

Z s Z s
n s m s

= = 	 (4.47)

where the degrees of the polynomials m(s) and n(s) differ by unity because Z(s) and 
Y(s) can have a simple pole or zero at s = ∞. Such an impedance function can be 
expanded in the form of a continued fraction like

	

( ) ( )
( )

1
2

11 3
1 3

2

3

4

1
1

1
1

n n
n n

n n
n n

D s a s a s
Z s g s

N s a s a s g s
g s

g s

−
−

− −
− −

+ +
= = = +

+ + +
+

+







	 (4.48a)  

or

	

( ) ( )
( )

1
2

11 3
1 3

2

3

4

1
1

1
1

n n
n n

n n
n n

D s a s a s
Y s g s

N s a s a s g s
g s

g s

−
−

− −
− −

+ +
= = = +

+ + +
+

+







	 (4.48b)

This gives the first Cauer canonical form of networks, as shown in Figure 4.6.
In the above first Cauer form of network (Figure 4.6(a)), successive pole re-

movals at infinity from the impedance and admittance functions was used [6]. In 
the second Cauer form of network, successive pole removals at zero frequency are 
used from impedance and admittance functions, as follows:

	

( ) ( )
( )

0 2 4

1 3 5 1

2

3

4

1 1
1 1

1 1
1 1

N s a a s a s
Z s

D s a s a s a s g s
g s

g s
g s

+ + +
= = = +

+ + + +
+

+







	 (4.49a) 

or
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( ) ( )
( )

0 2 4

1 3 5 1

2

3

4

1 1
1 1

1 1
1 1

N s a a s a s
Y s

D s a s a s a s g s
g s

g s
g s

+ + +
= = = +

+ + + +
+

+







	 (4.49b)

The corresponding networks are shown in Figure 4.7. We will illustrate the above 
procedure by realizing the impedance function in (4.44) corresponding to the third-
order Butterworth response. A continued fraction expansion of the right-hand side 
of (4.44) yields

	

+ + + + +
+ +

+ + +
+

+
+

2 3 2

3 2

2

2

2 2 1)2 2 2 1(

2s 2s s

s 1)2s 2s 1(

2s 2s

1)s 1(

s 1

s s s s s s

2s

s + 1

	

or in the first Cauer form of network:

	
( )1

1
1

2
1

Z s s
s

s

= +
+

+
	 (4.50)

The corresponding network is shown in Figure 4.8.
Figure 4.9 shows the computed frequency response of the designed third-order 

Butterworth low-pass filter computed with those of second- and fourth-order filters. 

Figure 4.6  First Cauer form of networks.
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Figure 4.9 shows that all three responses have the value of –3.0 dB at the cutoff 
frequency ω = ±1 radian/sec. However, the slopes of the responses become steeper 

Figure 4.7  Second form of a Cauer network.

Figure 4.8  First Cauer form of a third-order Butterworth low-pass filter of equal unity terminations 
and 1 rad/sec cutoff frequency.

Figure 4.9  Comparison of third-order Butterworth response with second- and fourth-order 
responses.
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beyond the cutoff frequencies as N increases. Eventually the slope approaches the 
value of –6N dB per octave or –10N dB per decade.

4.2.3  General Solution for Butterworth Low-Pass Filter Response

When the terminating impedances are unequal and not necessarily equal to unity and 
the radian cutoff frequency is not equal to unity but ω0 rads/sec, then the frequency 
response of an Nth order Butterworth filter can be shown to be of the form [8]

	
( ) 2 0

21 2

0

1
N

K
S jω

ω
ω

=
 

+   
	 (4.51)

where

	 ( )0 2

4 g L

g L

R R
K

R R
=

+ 	 (4.52)

The corresponding power reflection coefficient is obtained from (4.51) as

	 ( ) ( )

2

0
2 2 0

11 21 2

0

1

1

1

N

N

K

S j S j

ω
ω

ω ω
ω
ω

 
− +   

= − =
 

+   

	 (4.53)

Using the theorem of analytic continuation and replacing –jω by s in the above 
equation gives [6]

	 ( ) ( ) ( )
( )

δ
+ −

− =
+ −

2
2

11 11 2

1 1

1 1

N N
N

N N

x
S s S s

y
	 (4.54)

where

	 δ = −2
01N K 	 (4.55)

and

	
0 0

and
s y

y x
ω δω

= = 	 (4.56)

The zeros and the poles of the right-hand side of (4.54) are the solutions of the fol-
lowing equations:

	 ( )− + =21 1 0
N Nx 	 (4.57a)
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	 ( )− + =21 1 0
N Ny 	 (4.57b)

The poles are located on a unit circle in the s-plane as

	
( )

ω
+ −

= = 

2 1

2
0 , 1,2, ,2

k N
j

N
ks e k N 	 (4.58)

Once the locations of the zeros and poles are known, we consider the poles on the 
left half of the s-plane so that the denominator of S11(s) is strictly a Hurwitz poly-
nomial [7]. A Hurwitz polynomial H(s) has the following properties:

1	 H(s) is real when s is real
2	 Roots of H(s) have real parts, which are zero or negative.

Although the numerator of Z1(s) is not necessarily a Hurwitz polynomial, the 
coefficients of the polynomial must be real. Therefore, we should consider the real 
zeros and complex conjugate pairs of zeros only. This gives 

	 ( )
( )
( )

δ
−

= −
−

−
=

Π − + + + +
= ± = ±

+ + + +Π −





1
1 0 1 1

11 1
0 1 1

1

N
N N

i Ni N
N N N

N
ii

x x a a x a x x
S s

a a y a y xy y
	 (4.59)

where

	 1Na = 	 (4.60a)

and

	

( ) π

π−

  −    = =
  
    

1

cos 1
2

; 1,2, ,
sin

2

k k

k
N

a a k N
k
N

	 (4.60b)

For R2 > R1, we choose the minus sign in (4.59), then

	 ( ) ( )
( )

11
1

11

1

1in

S s
Z s R

S s

 +
=  − 

	 (4.61)

The ladder realization or Cauer form using continued fraction expansion [6] of 
the right-hand side of (4.61) yields the following set of equations for the low-pass-
prototype parameters as [8]

	
( )

1

1
0

2 sin
2

1

R
N

g

π

ω ς

 
  

=
−

	 (4.62a)



4.2  Belevitch Matrix and Transfer Function Synthesis	 159

	
( ) ( )

( )( )
θ θ

ω ς θ δ
− −

−
−

=
− +

4 3 4 1
2 1 2 2 2

0 4 2

4sin sin

1 2 cos
m m

m m

m

g g 	 (4.63b)

	
( ) ( )

( )( )
θ θ

ω ς θ δ
− +

+ =
− +

4 1 4 1
2 1 2 2 2

0 4

4sin sin

1 2 cos
m m

m m

m

g g 	 (4.63c)

for m = 1,2, …, 
2
N 

  
, where qm = 

2
m

N
π and N is the largest integer less than or equal 

to 
2
N .

The last element is

	
( )

( )
θ

ω δ
=

+
2 1

0

2 sin
; for odd

1N

R
g N 	 (4.63d)

	
( )

( )
θ

ω δ
=

+
1

20

2sin
; for even

1Ng N
R 	 (4.63e)

Ladder networks corresponding to odd and even N are shown in Figure 4.10. Note 
that the first element is a series inductor, for an odd N the last element is a series 
inductor, and for an even N the last element is a shunt capacitor. 

For R2 > R1, we choose the plus sign in (4.59), then [6]

Figure 4.10  Cauer network realization of Butterworth response (R2 > R1).
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	 ( ) ( )
( )

11
1

11

1

1in

S s
Z s R

S s

 −
=  + 

	 (4.64)

The element values are given by (4.63) and Figure 4.11 shows the Cauer network 
realizations. 

4.2.3.1  Required Order of a Butterworth Filter

The number of elements needed in a Butterworth filter is determined by the follow-
ing three parameters:

1.	  sω
g

ω
=

′
, the stopband to passband ratio (S = stopband frequency; ω´ = cut-

off frequency. ω´ = 1 for normalized case)
2.	  IL = stopband attenuation (dB) at ωS 
3.	  RL = passband return loss (dB)

The required order is given by [9]

	
20log
IL RL

N
g

+
≥ 	 (4.65)

For example, if IL = –60 dB, RL = –26 dB, and γ = 3, then N ≥ 9.01. Therefore, one 
should choose N = 10.

Figure 4.11  Cauer network realization for R2 > R1.



4.2  Belevitch Matrix and Transfer Function Synthesis	 161

4.2.3.2  Time Delay of a Butterworth Low-Pass Filter

An important parameter of any filter is its frequency-dependent time delay. It can 
be shown that the time delay in seconds for the passage of a single frequency signal 
through a Butterworth low-pass filter of order N is given by [10]

	 ( )
ω

π

ω

−

=  + 
 =

+

∑
21

0

2

sin 2 1
2

(sec)
1

NN

r

d N

r
N

T
	 (4.66)

For N=2

	
2

4

2 2
(sec)

1dT
ω

ω

+
=

+
	 (4.67)

Figure 4.12 shows the time delay response plot of the frequency dependence of a 
second-order Butterworth filter.  

4.2.4  Chebyshev Approximation

In a Butterworth low-pass filter approximation, the frequency response characteris-
tic is closest to that of an ideal low-pass filter at ω = 0. When we approach the cutoff 
at frequency ω0, the approximation becomes poorer. Unlike in the Butterworth 
filter, if one allows some ripple in the passband, the approximation becomes better 
than the Butterworth case. Finally, it is best when the ripple has equal amplitudes 
in the passband. This is also known as equiripple passband approximation. Such 
equiripple approximation is realized using Chebyshev’s minimax theorem [11] and 
the corresponding analytical function. Owing to its equiripple property, the filter 
passband is equally good from ω = 0 to w = ω0. The Chebyshev polynomial of order 
N is defined by

Figure 4.12  Time delay response of a second-order Butterworth filter.
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	 ( )1( ) cos cos 1NT N forω ω ω− = <  	 (4.68a)

and

	 ( )1( ) cosh cosh 1NT N forω ω ω− = >  	 (4.68b)

	 ( )0 1C ω = 	 (4.69a)

	 ( )1C ω ω= 	 (4.69b)

Higher-order Chebyshev polynomials are obtained from the following recursive 
formula:

	 ( ) ( ) ( )1 12k k kC C Cω ω ω ω− −= − 	 (4.70)

Using (4.70) and (4.69) gives

	 ( ) ( ) ( )ω ω ω ω ω= − = −2
1 02

2 2 1C C C 	 (4.71)

The behavior of C3(ω) and C4(ω) are shown in Figure 4.13. 
The important properties of Chebyshev polynomials are

1.	 The magnitude of CN(ω) remains within ±1 within the interval |ω|<1
2.		 For |ω| > 1, CN(ω) increases rapidly with increasing values of |ω|.
3.	 The zeros of CN(ω) are situated within the interval |ω| < 1.

Considering the above characteristics of a Chebyshev polynomial, the transfer func-
tion of a Chebyshev low-pass filter is defined as

	 ( ) ( )
2

12 2 2

1
1 N

S
C

ω
ε ω

=
+

	 (4.72)

Figure 4.13  Third- and fourth-order Chebeshev polynomials.



4.2  Belevitch Matrix and Transfer Function Synthesis	 163

Figure 4.14 shows the frequency response of a fourth-order Chebyshev low-pass 
filter. In accordance with the properties of a Chebyshev polynomial, the response 
oscillates between the maximum 1 and 1/(1+ε2). Beyond the cutoff frequency, which 
in the present case is 1, the response approaches zero very rapidly. The distance 
between maximum and minimum in the pass band is the

	
ε

= −
+ 2

1
Passband ripple 1

1
	 (4.73)

At cutoff, for any value of N

	 ( )12 2

1

1
S ω

ε
=

+
	 (4.74)

Sufficiently above cutoff |ω| >> 1

	 ( ) ( )12

1

N

S
C

ω
ε ω

≅ 	 (4.75)

The attenuation in decibels

	 ( ) ( )( ) 20log 20log NdB Cα ε ω≅ +    	 (4.76)

For large ω, CN(ω) can be approximated by 2N–1ωN. Consequently, the attenuation 
becomes

	 ( ) ( ) ( ) ( )20log 20 log 6 1dB N Nα ε ω= + + − 	 (4.77)

Therefore, beyond the passband, the Chebyshev response falls off at the rate of 
20N dB/decade after an initial fall of 6(N–1)+20log(e) dB. Usually ε has a very low 
value (less than unity). As a result, the term 20log(ε) is negative. Therefore, the filter 

Figure 4.14  Fourth-order Chebyshev approximation of a low-pass filter.
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designer should use a sufficiently large value of N in order to compensate for the 
decrease in loss due to ε. 

4.2.4.1 Required Order of a Chebyshev Filter

Unlike the Butterworth response, the Chebyshev response depends on two factors, 
ε and N. The required order of a Chebyshev filter is given by [9]

	 2

6

20log( 1)

IL RL
N

g g

+ +
≥

+ − 	 (4.78)

The various parameters in (4.78) are described in Figure 4.15.
The procedure can be illustrated by the following example. Let IL = 40 dB, 

RL = 20 dB, and γ = 3.5, as shown in Figure 4.15. Then (4.78) gives N = 3.9476. 
Therefore, one should choose N = 4. The frequency response of a general Cheby-
shev filter can be written as [8].

	

2

0
21

0 2 2

0

1 N

K
S

C

ω

ω ω
ε

ω

 
=    

+   
	 (4.79)

where

	 ( )
( )

2 1 2
0 21 2

1 2

4
0

R R
K S

R R
= =

+ 	 (4.80a)

for N odd, and 

Figure 4.15  Pertinent parameters of a Chebyshev low-pass filter.
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	 ( ) ( ) ( ) ( )
22 2 1 2

0 21 2

1 2

4
1 0 1

R R
K S

R R
ε ε= + = +

+ 	 (4.80b)

for N even.
Now,

	

2 2
2 2 0

0
11 21

0 0 2 2

0

1

1

1

N

N

K C

S S

C

ω
ε

ωω ω

ω ω ω
ε

ω

 
− +       

= − =        
+   

	 (4.81)

Replacing ω/ω0 by ϖ in the above equations gives

	 ( ) ( ) ( )
( )

2 2
2 2 0

11 21 2 2

1
1

1
N

N

K C
S S

C

ε ϖ
ϖ ϖ

ε ϖ

− +
= − =

+
	 (4.82)

	 ( ) ( ) ( )
( )

ε ϖ
ϖ ϖ

ε ϖ

− +
− =

+

2 2
0

11 11 2 2

1

1
N

N

K C
S j S j

C
	 (4.83)

Replacing ϖ by –js gives

	 ( ) ( ) ( )
( )

2 2

11 11 0 2 2

1
( ) 1

1
N

N

C js
S s S s K

C js

ε

ε

+ −
− = −

+ −



	 (4.84)

where

	
01 K

ε
ε =

−
 	 (4.85)

The poles of the right-hand side of (4.84) are given by 

	 ( )2 1 2 1
sinh( )sin cosh cos

2 2r

r r
s j

N N
η π η π

− −   = − +      
  	 (4.86a)

where

	 11 1
sinh

N
η

ε
−  =   

 	 (4.86b)
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while the zeros rs  are obtained by using the same equations but η is replaced by 

	 11 1
sinh

N
η

ε
−  =   







	 (4.86c)

From the above equations we conclude that the poles of a Chebyshev transfer func-
tion lie on an ellipse whose center is at the origin with the semimajor and semiminor 
axes cosh(η) and sinh(η), respectively. Similarly, the zeros are located on an ellipse 
whose center is at the origin and whose semimajor and semiminor axes are cosh 
(η) and sinh(η), respectively. Figure 4.16 shows the locus of the poles of a Che-
byshev filter. The corresponding locus of zeros is obtained by replacing η by η in 
Figure 4.16.

Once the locations of the poles and the zeros in the complex frequency plane 
are known, one can form the reflection coefficient function S11(s) using the same 
line of arguments as was done in case of the Butterworth filter. That is, we consider 
the poles on the left-hand side of the s-plane and complex conjugate poles on the 
jω axis. Also, the zeros are chosen either in the left-half s-plane or the right-half 
s-plane so that all the coefficients of the numerator of the reflection coefficient 
function are real. This gives us

	 ( )
( )

( )
1

11

N

r
r
N

r
r

s s
S s

s s

=

−
= ±

−

∏

∏



	 (4.87)

For R2 > R1, we choose the minus sign in (4.59), then

Figure 4.16  Locus of poles of a Chebyshev low-pass filter.
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	 ( ) ( )
( )

11
1

11

1

1in

S s
Z s R

S s

 +
=  − 

	 (4.88)

The ladder realization or Cauer form of realization using continued fraction expan-
sion of the right-hand side of (4.88) yields the following set of equations for the 
low-pass-prototype parameters [8].

For R2 > R1 , we choose the minus sign in front of the right-hand side of (4.87). 
Upon expanding, the polynomial and subsequent continued fraction expansion 
gives

	 ( ) ( )
1 1

1
0

2 sin

sinh sinh

R
g

θ

ω η η
=

 −  
	 (4.89a)

where 

	
2r

r
N
π

θ = 	 (4.89b)

	
( ) ( )4 3 4 1

2 1 2 2
0 2

4sin sinr r
r r

r

g g
θ θ

ω
− −

− =
Θ

	 (4.89c)

	
( ) ( )4 1 4 1

2 1 2 2
0 2

4sin sinr r
r r

r

g g
θ θ

ω
− +

+ =
Θ

	 (4.89d)

for r = 1,2,…,  2
N 

 , and

	 ( ) ( ) ( ) ( ) ( ) ( )2 2 2
2 2 2sinh sinh sin 2sinh sinh cosr r rθ η η θ η η θ= + + −  	 (4.89e)

and for odd N

	 ( ) ( )
2 1

0

2 sin

sinh sinhN

R
g

θ

ω η η
=

 +  
	 (4.89f)

for even N

	 ( ) ( )
1

0 2

2sin

sinh sinhNg
R

θ

ω η η
=

 +  
	 (4.89g)

The network topologies corresponding to R2 > R1 and R1 > R2 are shown in Figures 
4.10 and 4.11, respectively.
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4.2.4.2  Time Delay of a Chebyshev Filter

It can be shown that the time delay in seconds for the passage of a single frequency 
signal through a Chebyshev low-pass filter of order N is given by [10]

	

( ) ( )
( )

( )

1
2

2
0

1
2 2

sinh 2 2 1

sin 2 1

1

N

r
r

d
N

U N r

r
T

T

ε ϖ η

θ

ε ϖ

−

=

− −

+
=

+

∑
	 (4.90a)

where 

	 ( ) ( ) f
ϖ

f

+
=

sin 1

sinr

r
U 	 (4.90b)

and

	 ( )f ϖ−= 1cos 	 (4.90c)

Figure 4.17 shows a plot of the frequency dependence of the group delay for a third-
order Chebyshev low-pass filter.

4.2.5	   Elliptic Function Approximation

Butterworth and Chebyshev approximations are so-called all pole approximations 
because the transmission zeros of such functions are at infinite frequency. Unlike 
such filters, Cauer parameter filters or Elliptic function filters have their transmission 

Figure 4.17  Time delay response of a third-order Chebyshev low-pass filter.
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zeros at finite frequencies. Consequently, unlike the Chebyshev approximation, it 
has a ripple not only in the passband but also in the stopband. The advantage of 
an elliptic filter is that it offers a much steeper skirt selectivity, immediately beyond 
the cutoff frequency, than a Chebyshev filter of the same order. However, such an 
advantage is achieved at the cost of a more complex filter configuration than that 
of a Chebyshev filter. For example, a Butterworth or Chebyshev filter can be real-
ized using nonresonant elements and a simple Cauer form of ladder network using 
simple inductors and capacitors, as shown in the preceding sections. But, an elliptic 
filter needs either shunt or series resonant elements, series or shunt elements, or 
cross-coupled elements between nonadjacent nodes in the ladder. In what follows, 
we will first discuss the basic theory of an elliptic low-pass filter approximation and 
then the lumped element synthesis technique. 

4.2.5.1  Theory of Elliptic Filter Approximation

The transfer function of an elliptic low-pass filter is given by (see Figure 4.2)

	
( ) 2 0

21
2 2

0

1 N

K
S ω

ω
ε

ω

=
 

+ Ψ   
	 (4.91)

Without loss of generality, we may assume K0 and ω0  to be unity. Hence the nor-
malized transfer function of an elliptic low-pass filter can be written as

	 ( ) ( )
2

21 2 2

1
1 N

S ω
ε ω

=
+ Ψ

	 (4.92a)

The properties of function ΨN(ω) and the synthesis of an elliptic function low-
pass filter have been studied by various researchers using different techniques 
[9,10,12,13]. However, the best ones are by Baher [14] and Zhu and Chen [8]. The 
main properties of ΨN(ω) are

1.	 ΨN(ω) has N zeros within |ω| < 1
2.	 ΨN(ω) oscillates between ±1 in the interval |ω| < 1
3.	 At cutoff ΨN(ω) = 1
4.	 ΨN(ω) oscillates between ± 1/k1 within |ω| > 1/k 

where 

	 0

s

k
ω

ω
= 	 (4.92b)

and the discrimination parameter
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max

min

10

1
10

10 1

10 1
k

α

α

−
=

−

	 (4.92c)

Figure 4.18 shows the graphical representation of (4.91). 
The above properties of ΨN(ω) forces it to satisfy the following first-order or-

dinary differential equation [8,14]:

	 ( )
( ) ( )2 2 2 2 2 2

11 1 / 1 1
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ω ω

ω ω ω ω

Ψ
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	 (4.93a)

with
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d
ω ω
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= 	 (4.93b)

and

	
( )

( ) 1 ,N s

N

k

d

d
ω ω ω

ω

ω
Ψ = ≠

Ψ
	 (4.93c)

where C is a constant. The forms of the function ΨN(ω) that satisfy the above condi-
tions are given by, for N-odd,

	 ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2
1

0 2 2 2 2 2 2 2 2 2
11 1 1

r q

N

r q

h
k k k

ω ω ω ω ω ω ω
ω

ω ω ω ω ω ω

− − −
Ψ =

− − −

 

 

	 (4.94)

Figure 4.18  Frequency response of a fifth-order elliptic filter;  ω0 = 1, ωs = 1/k.
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where various r sω′  are defined by
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 
 	 (4.95)

and for N-even
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where ωr are given by
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	 (4.97)

ho and he are chosen such a way that the condition ΨN(1) = 1 is satisfied, which 
gives
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and
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Equations (4.95) and (4.97) involve the so-called elliptic integral function K(k) and 
the Jacobian sine elliptic function sn(u, k). The functions are defined as [15]

	 ( )
2

2 2
0 1 sin

dx
K k

k x

π

=
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∫ 	 (4.100)

and
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where

	 ( )
( )

/

2

K k

K ke

π

υ
−

=
	 (4.102)

with 

	 / 21k k= − 	 (4.103)

For 0 < k ≤ 0.173
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/
4 2

ln
K k

K k kπ

 
=   

	 (4.104a)

and, for 0.173 < k ≤ 1
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1ln 2 2 tan

K k

K k k

π
−

=
+ 	 (4.104b)

4.2.5.2  Order of an Elliptic Filter

The required order of an elliptic filter is given by [8]

	

( )
( )
( )
( )

/

1

/
1

K k

K k
N

K k

K k

≥ 	 (4.105)

where the parameters k and k1 have been defined by (4.92b) and (4.92c), respec-
tively. Consider the following example. We are required to design an elliptic low-
pass filter with the following specifications:

1.	  
0

2sω

ω
=

2.		 Passband ripple ε = –0.01 dB
3.	  Stopband isolation at ω = ωs is –50 dB

Using (4.92a) and (4.105) gives the filter order N = 5. Using (4.95), we obtain

	 ω
 = =  1

2
, 0.6152rad/sec

K
sn k

N
	 (4.106a) 
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	 ω
 = =  2

4
, 0.9573 rad/sec

K
sn k

N
	 (4.106b)

and

	
0.01
1010 1 0.048ε = − = 	 (4.107)

Therefore, using the above parameters in (4.91) gives the normalized transducer 
power gain
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where
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	 (4.109)

Using ω = –js in (4.108) and (109) and using the relationship

	 ( ) ( ) ( )11 11 21 21( ) 1S s S s S s S s− = − − 	 (4.110)

gives [8]

	 ( )
( ) ( )

( ) ( ) ( ) ( )

2
2 22 2 2 2 2 2

1 2

11 11 2
2 2 2 22 2 2 2 2 2 2 2 2 2 2 2

1 2 1 2

( )
1 1

k
s s s

S s S s
k

k s k s s s s

ε ω ω

ω ω ε ω ω

− + +
ℵ− =

+ + − + +
ℵ

	 (4.111)

From the above equation, the poles and zeros of S11(s) which lead to a realizable 
input impedance of the filter are (obtained by using MATLAB) ([16])

	
1

2
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p

p j

p j

= − 
 = − ± 
 = − ± 

	 (4.112a)

and
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	 (4.112b)

respectively. Using the above results, the input reflection coefficient is obtained as

	 ( )
4 2

4 2 0
11 5 4 3 2

5 4 3 2 1 0

d s d s d
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e s e s e s e s e s e

+ +
=

+ + + + +
	 (4.113)

where di (i = 4, 2, 0) and ei (i = 5,4,3.2,1,0) numerical constants.
The corresponding input impedance is obtained by using 

	 ( ) ( )
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1

1in

S s
Z s

S s

+
=

−
	 (4.114)

Once Zin(s) is known in terms of s, the corresponding network can be synthesized 
using midshunt or midseries form. Darlington’s [17] synthesis procedure based on 
continued fraction expansion and Lin and Tocad’s [18] algorithm can be used to 
obtain the element values (see Appendix 4A for Darlington’s method). Figure 4.19 
shows the synthesized filter in two different forms. The filters are synthesized us-
ing the above procedure and a Fortran code [19]. The corresponding frequency 
responses are shown in Figures 4.20.

Figure 4.19  Synthesized fifth-order elliptic low-pass filter.
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4.2.6  Generalized Chebyshev Low-Pass Filters

In a generalized Chebyshev low-pass filter [20], the designer has more degrees of 
freedom than what is available in a Chebyshev or elliptic function filter. The de-
signer has separate control over the passband ripple and the location of the attenu-
ation poles in the stopband and skirt selectivity. These flexibilities allow a designer 
to realize many special properties like flat group delay in the passband and more 
compact cross-coupled filters. Let us consider (4.92a) in order to understand the 
theory behind the operation of a generalized Chebyshev low-pass filter.

Figure 4.20  (a)Frequency response of the magnitude of S11 and S21 in decibels of elliptic filter and 
(b) frequency response of the phase of S12 in decibels of elliptic filter analyzed by Ansoft Designer 
(Ansoft Corporation, Bethelehem, PA, 2005).
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=
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Also, as before since the conservation of power holds,

	 ( ) ( )2 2

11 21 1S Sω ω+ = 	 (4.116)

where the function ΨN(ω) is defined as 
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∑ 	 (4.117)

where ωn = – jsn is the position of the nth attenuation pole in the stopband in the 
complex s-plane. It can be very easily verified that (4.117) satisfies all the con-
ditions, besides others, for a Chebyshev filter and it degenerates into an actual 
Chebyshev filter when all the prescribed attenuation poles approach infinity. De-
termination of the transducer power gain as a rational function of ω is as follows.

In (4.119), we write
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	 (4.118)

and use the identity

	 ( ) { } ( )1 2cosh ln 1 lnn n n n nx x x a b− = + − = + 	 (4.119)

where

	 n na x= 	 (4.120)

	 2 1n nb x= − 	 (4.121)

Using the above equations gives
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	 (4.123)

We can write
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and
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Using the above functions, ΨN(ω) can be determined using a recursive procedure 
as follows:
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with
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Following the above recursive procedure, it can be shown that the numerator of 
ΨN(ω) is equal to [21]

	 ( ) ( ) ( ) ( ) ( ){ } ( ) ( ){ }/ / /1
[ ]

2«««Num E E U V U Vω ω ω ω ω ω ω Ψ = + = + + +  	 (4.128)

Also

	 ( ) ( )/
N NU Uω ω= 	 (4.129a)

	 ( ) ( )/
N NV Vω ω= − 	 (4.129b)

Using the above relationships we obtain
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ω ε ω
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+
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Using the above procedure, S11(s) can be expressed in the form given by the right-
hand side of (4.113). For example [21], if ω1 and ω2 are 1.3217 rad/sec and 1.8082 
rad/sec, respectively, and the desired passband return loss is –22 dB (ε = 0.00635, 
using /1010 1RLε = − ), then

	 ( )
4 3 2

2

6.0637 4.6032 4.7717 3.2936 0.1264
0.4183 1.3096 1N

ω ω ω ω
ω

ω ω

− − + +
Ψ =

− +
	 (4.132)

Once ΨN(ω) is obtained, the rest of the procedure is the same as that followed for 
Butterworth, Chebyshev, and Elliptic filter syntheses. Figure 4.21 shows the com-
puted frequency response of the filter.

Since the generalized low-pass filter is basically an extracted pole filter where 
it has transmission zeros at real frequencies like in an elliptic filter, it has the same 
topology as the elliptic filter shown in Figure 4.19. The appendix summarizes the 
network synthesis steps involved in realizing a low-pass prototype from the trans-
fer function in the frequency domain. 

4.3  Concept of Impedance Inverter

Realization of ladder networks like those shown in Figure 4.10 is in most cases 
impractical in microwave circuits. An impedance inverter is a versatile element that 
overcomes this problem. Ideally, it is a lossless reciprocal, frequency-independent 
two-port passive network having the ABCD matrix
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    =      

	 (4.133)

Figure 4.22(a) shows a schematic representation of an impedance inverter. Let us 
terminate the impedance inverter by a load ZL, as shown in Figure 4.22(b). The 
input impedance of the terminated inverter as a two-port network is given by

	 ( )
2

L
in

L

L

B
A

Z K
Z s

D ZC
Z

+
= =

+
	 (4.134)

Equation (4.134) shows that the input impedance of an impedance inverter is the 
reciprocal of the terminating impedance multiplied by the square of K. Let us con-
sider the third-order Butterworth low-pass filter synthesis example in Section 4.2.1. 
The desired driving point impedance to be synthesized is

	 ( ) ( )
( )

2 3
11

1 2
11

1 1 2 2 2
1 1 2 2

S s s s s
Z s

S s s s

+ + + +
= =

− + +
	 (4.135)

Figure 4.22   (a) Impedance inverter and (b) impedance inverter terminated by a load ZL.

Figure 4.21  Frequency response of generalized Chebyshev low-pass filter (ω1 = 1.3217, ω2 = 
1.8082 rad/sec, and RL = –22 dB).
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Extracting a 1h series inductor gives

	 ( ) ( )
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2 1 2 2

1 2 2 2 1
1 2 2 1 2 2
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= − = − =
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	 (4.136)

Extraction of an impedance inverter K = 1 gives
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+
	 (4.137)

Extraction of a 2h series inductor gives
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1 2 2 1
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	 (4.138)
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Extraction of a second impedance inverter of K23 = 1gives

	 ( ) ( )5
4

1
1Z s s

Z s
= = + 	 (4.139)

General formulas for an Nth-order inverter-coupled Butterworth filter are [9] (see 
Figure 4.2 and (4.51))

1.	 Matched case (RL = Rg = 1 , K0 = 1)

	
2 1

2sin
2r

r
g

N
− =  

 
	 (4.140)

	
, 1 1

( 1,2, , )
r rK

r N
+ =

= 
	 (4.141)

2.	 Minimum phase S11(s) 
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	 1
1LR

α

α

+
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−
	 (4.144)

	 2
01N Kα = − 	 (4.145)

3.	 Singly terminated case or zero source impedance (Rg = 0, RL = 1)

	
( ) ( )2 1

sin , 1,2, ,
2r r

r
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

	 (4.147)

One can start synthesizing a ladder network from the input admittance Y1(s) in-
stead of the input impedance Z1(s) as above. In that case the series inductances 
become shunt capacitances, as shown in Figure 4.23. The values of the capacitances 
are obtained from (4.140), by replacing g by C and the values of the J-inverters are 
obtained from (4.141) by replacing K by J.

The corresponding equations for the Chebyshev filter are [9]

1.	 Matched case (K0 = 1, RL = Rg = 1)

Figure 4.23  Admittance inverter-coupled Butterworth low-pass filter.
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	 (4.150)

2.	 Minimum phase S11(s)
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3.	 Singly terminated case (RL = 1Ω, S12 = Z12)
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The impedance inverter coupled elliptic low-pass filter configuration is shown in 
Figure 4.24 [9].

The impedance inverter coupled prototype parameters are [9]

1.	  Minimum phase S11(s) 
2.	
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Figure 4.24  Inverter-coupled prototype for an elliptic filter.
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0 1jsn U kξ = − 	 (4.164)

3.	 Matched case (K0 = 1, ξ = ∞, RL = 1)
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4.	  Singly terminated case (RL = 1, S12 → Z12)
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( ) ( ) ( ) ( ) ( ) ( )2 22 1 2 2 1 1

2

( 1,2, , )

r

K k K k K k K k
sn r sn r k cd cd r

N N N N
X

r N

η

η

             − − + − −                     =

= 

	 (4.171)

	

( ) ( ) ( )2 2 2 2 2

. 1

2
1 1

2

( 1,2, , 1)

r r

rK k rK k rK k
sn k cd dc

N N N
K

r N

η η

η+

        
+ +                =

= −

	 (4.172)

The elliptic functions appearing in the above equations are defined as [15] and 
sn(u,k) is defined in (4.100) and (4.101).
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4.3.1  Physical Realization of Impedance and Admittance Inverters

The impedance and admittance inverters described in the preceding sections were 
assumed to be frequency-independent and ideal, which provides a ±90° phase shift 
and an impedance or admittance inversion with respect to the value K or J of the 
inverter according to (4.134). Let us consider the ABCD matrix of a section of 
transmission line of electrical length q and characteristic impedance Z0

	

( ) [ ]
( ) ( )

0

0

cos sin

sin
cos

jZ
A B

C D
jZ

θ θ

θ
θ

 
   =       

	 (4.173)

Now, if q = 90°, then
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which is the ABCD matrix of an impedance inverter of value K = Z0. Similarly it can 
be shown that the same transmission line is also an admittance inverter of value J 
= Y0 = 1/Z0. However, one has to keep in mind that the condition q = 90°is fulfilled 
precisely at a single frequency only. Such an ideal inverter does not exist in reality. 
However, for a couple of percentage of frequency variation around the frequency at 
which the transmission line is exactly 90° long, the deviation from an ideal inverter 
behavior can be accepted for all practical purposes. A filter designed on the basis 
of ideal inverter behavior would have a frequency response, which is very close to 
theoretical response for that case. For larger bandwidths or larger frequency varia-
tions around the nominal frequency, departure of a 90° line from the ideal one can 
be accommodated into the design by splitting the line into an ideal one and one with 
two additional short lengths of transmission line, one on either side, which account 
for the excess or deficit in phase shift from the ideal phase shift of 90° [22]. Such an 
inverter is shown in Figure 4.25. In most cases, the compensating elements are ab-
sorbed in adjoining networks. For example, if the K-inverter is a coupling element 
in a band-pass filter, the length of the compensating elements shortens the adjoining 
transmission line resonator elements.

Like transmission line inverters, lumped element inverters exist that consist 
of pure reactive elements like inductors and capacitors. Such inverters are shown 
in Figure 4.26 [22]. The negative elements are absorbed in adjoining networks as 
shown in Figure 4.27 [22]. In general, a transmission line discontinuity can be used 
as an inverter in which the compensating elements appear as extra phase shifts. For 
example, let us consider the H-plane iris discontinuity in a rectangular waveguide, 
shown in Figure 4.28. The iris has the fundamental mode scattering matrix

	 [ ] 11 12

21 22

S S
S

S S
 

=  
 

	 (4.175)

The scattering matrix can be used to derive the equivalent T-network consisting of 
two series reactive elements and a shunt element together with the phase shifts of 
φ/2.

The values of the K-inverter and the phase shift are given by

	
1tan tan

2
s

w w

xK
Z Z

f −   = +       	 (4.176)

Figure 4.25  Compensated transmission line impedance inverter.
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1 1

2
tan tanp s s
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x x x

Z Z Z
f − −   

= − + −      	 (4.177)

Note that the extra phase shift φ/2 is equivalent to the negative elements in the 
lumped circuit impedance inverters in Figure 4.26. Therefore, if the phase shift is 
positive then it has to be subtracted from the adjacent networks. We will illustrate 
the procedure in Chapters 5 and 6 while discussing waveguide low-pass and band-
pass filters.

Figure 4.26  Lumped element inverters.

Figure 4.27  Absorption of negative elements of an inverter in adjoining networks.
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4.4  Low-Pass Prototype Using Cross-Coupled Networks

One of the most significant low-pass prototype configurations that dominates the 
modern-day electrical filter design is the cross-coupled low-pass prototype. In prin-
ciple, the cross-coupled configuration can be based on any of the four basic fre-
quency response types such as Butterworth, Chebyshev, elliptic, and the generalized 
Chebyshev response. We will demonstrate the method based on the generalized 
Chebyshev response.

Consider the generalized Chebyshev response given by (4.92a), which is

	 ( ) ( )
2

/
21 2 2 /

1

1 N

S ω
ε ω

=
+ Ψ 	 (4.178)

where ε is related to the passband ripple via (4.73) and the passband return loss RL 
via

	 10

1

10 1
RL

ε =

− 	 (4.179)

Figure 4.28  Waveguide iris discontinuity as an impedance inverter.
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where, n ns jω= ′ is the location of the nth transmission zero in the complex s-plane. 
For all values of N, ( )1 1N ωΨ = ± =′ . Also, the rational function ( )N ωΨ ′  can be 
expressed as [21]
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with
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Obviously the above procedure is an alternative to Cameron’s [20], which is de-
scribed in Section 4.2.6. Now, let us consider the coupled line form of low-pass 
prototype circuit shown in Figure 4.29.

The coupling values Mij (i = 1,2,..., N and j = 1,2,…, N) completely define the 
network. The loop analysis of the network yields the following equation
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or,
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	 [ ] [ ][ ]e A I= 	 (4.185)

For L =1 Henry, S = s = jω and the two-port scattering parameters are given by [21]
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The normalized mutual inductances or coupling coefficients are obtained by follow-
ing an optimization procedure by Amari [23] as follows.

We define a cost function
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2 2

11 21 11 112 2
1 1

1 1
1 1

N N

zi pi
i i

K S S S S
ε ε

ω ω ω ω
ε ε= =

   
= + + = − − + = −      + +

∑ ∑ 	 (4.188)

and a topology matrix [P] where 

	 1 0ij ijP if M= ≠ 	 (4.189)

and

	 0 0ij ijP if M= = 	 (4.190)

The topology of the network is determined beforehand and should be enforced at 
each step of the optimization. For a derivative based optimization, the pertinent 
derivatives are obtained as

Figure 4.29  Generalized coupled-resonator network.
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Using the above cost function (4.188) together with the derivatives defined by 
(4.191) through (4.196), a FORTRAN code can be written for the determination 
of the coupling parameters Mij in (4.184). IMSL [24] library subroutine NCONG 
is a suitable optimization subroutine that can be used in the code. Following the 
definition of group delay in a two-port device [23]

	 21Img
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ω
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	 (4.197)

we get from the above equations
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The above procedure has the following advantages over other conventional meth-
ods [25, 26].

1.	  Enforcement of the predetermined topology matrix excludes the need for 
similarity transforms.

2.		 Filters of arbitrary even and odd orders can be synthesized.
3.		 One can synthesize specific coupling elements of a given sign or within a 

magnitude range if intended implementation calls for such a constraint.
4.		 The resulting solution, if one is obtained, is not affected by the problem of 

round-off errors that plague extraction methods.
5.	 If an exact solution is not found, an approximate, which may be accept-

able, is always given. This happens when the desired prototype response is 
not within the chosen topology.

4.5  Design of Low-Pass Prototypes Using Optimization and the 
Method of Least Squares

In the preceding sections we have shown various analytical methods for design-
ing a low-pass prototype that offers a prescribed frequency response, Butterworth, 
Chebyshev, elliptic, or generalized Chebyshev. Such frequency responses have their 
respective circuit configurations. The method based on computer optimization and 
the method of least squares (MLS), on the other hand, is very general and versatile. 

The basic method of least squares for adaptive filters is described in [27]. The 
versatility of the method includes the following features [28]:

1.	 The filter design is combined by the impedance matching of the input and 
output impedances;

2.	 The input and the output impedances can be complex;
3.	 It can design all kinds of filters including the four fundamental ones (i.e., 

low-pass, high-pass, band-pass, and bandstop);
4.	 Specification of any frequency band;
5.	 Specification of any physically realizable frequency response.
6.	 Dual-band and multiband frequency response;
7.	 Any selected cascaded circuit configuration.

Referring to Figure 4.30, the power loss ratio of the lossless two-port network is 
given by

	 2

21

1
LRP

S
= 	 (4.199)

	
( ) ( )
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2 Re ReS L

L S L S

Z Z
S

AZ B CZ Z DZ
=

+ + +
	 (4.200)
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Next, an error function is constructed according to the frequency response in the 
passband, transition band, and stopband, as shown in Figure 4.31. The filter’s fre-
quency response curve is required to pass through the white area and avoid the 
dashed area. The error function is formed as follows:

	 P P T T S SError W ER W ER W ER= × + × + × 	 (4.201)

where

WP, WT, and WS are weighting functions

and
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21 21
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1

2
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ER sign S L S L
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 = − − − ∑ 	 (4.203)

	 ( ) ( )2
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ER sign S L S L
∈

 = − − − ∑ 	 (4.204)

Figure 4.31  Target frequency response.

Figure 4.30  Two-port network.
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k As
At k

k k p

L
L f

f

f f f

= ∆
∆

∆ = −
	 (4.205)

Figure 4.32  The basic unit.

Figure 4.33  Flowchart of MLS algorithm for optimization of filter elements values. (Reproduced 
courtesy Electromagnetic Academy, United States.)
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∆f = fS – fP is the width of the transition band
and

	

( )sign 1 for 0

1 for 0

x x

x

= − <
= + ≥ 	

The process begins with a cascaded connection of several shunt and series units of 
the form shown in Figure 4.32 [29]. Usually the element next to the source or load 
is chosen to be a series or a shunt element. Initial values are selected as in (4.206)

	
( ) ( ){ }

( ) ( ){ }ω ω

+
= =

+ ′/

0.4 Re Re 1
and

Re Re
s L

s L

Z Z
L C

Z Z 	 (4.206)

where ω´ is cutoff frequency of the low-pass and high-pass filters. It is the center 
frequency when the method is applied to band-pass and bandstop filters [29]. 

Next, the computer program determines the optimum values of the circuit el-
ements under the specified constraints. If an inductor becomes too small to be 
realized, it is short-circuited. Similarly, a capacitor is removed and shorted out if it 
becomes too large. In the exact same manner, each high-value inductor and low-
value capacitor is open-circuited.

Figure 4.33 shows the flowchart of the MLS algorithm for optimization of fil-
ter element values [29]. FMINCON is the conjugate gradient subroutine in MAT-
LAB toolbox.

Table 4.2 shows and compares the low-pass prototype element values (see 
Figure 4.34) computed by MLS optimization and conventional network synthesis 
method for Chebyshev and elliptic filters. Figure 4.35 shows the corresponding 
frequency responses. More examples are shown in Figures 4.36 and 4.37. Table 4.3 
shows the element values.

Table 4.2  Low Pass Prototype Comparison
LAs g1 g2 g3 g4 g5 g6 g7 Error

Chebyshev Literature 
[34]

41.9 
dB

1.1812 1.4228 2.0967 1.5734 2.0967 1.4228 1.812 –

Designed by 
MLS

1.115 1.4429 2.055 1.5749 2.14 1.4046 1.245 3.59E-
21

1.21 1.3955 2.11 1.5797 2.07 1.4575 1.14 0

1.165 1.4541 2.07 1.5720 2.125 1.3945 1.195 0

Elliptic Literature 
[34]

1.0481 0.1244 1.2416 1.6843 0.354 1.0031 0.8692 –

Designed by 
MLS

1.0385 0.1237 1.245 1.6903 0.3558 1.0000 0.8721 2.00E-
16

1.0816 0.1281 1.22 1.6952 0.3478 1.015 0.8535 5.28E-
06

1.0669 0.1273 1.235 1.6907 03494 1.01 0.8680 2.26E-
06

Re(ZS) = Re(ZL) = 1, ωP = 1 rad/sec, ωS = 1.6129 rad/sec, LAr = 0.1 dB.

Source: [28].
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Table 4.3a  Element Values in Figure 4.36a
LAr LAs L1 (nH) L2 (nH) C1 (pF) L3 (nH) L4 (nH) C2 (pF) L5 (nH) C3 (pF)

0.1 dB 30 dB 1.568 0.8294 1.23 2.8615 2.267 0.8701 2.7519 1.12

fP = 3.00 GHz, fS = 3.5 GHz

Source: [28].

Table 4.3b  Element Values in Figure 4.36b
LAr LAs L1 (µH) C1 (nF) L2 (µH) C2 (nF) L3 (µH) C3 (nF) C4 (nF) L4 (µH) C5 (nF) C6 (nF) L5 (µH)

0.3 
dB

25 
dB

3.4925 0.3007 2.9459 0.1205 1.5402 0.3403 0.5620 1.4344 0.9852 0.4621 4.5577

fP = 4.00 MHz, fS = 4.20 MHz

Source: [28].

Figure 4.34  Low-pass prototype filter for (a) Chebyshev response, (b) elliptic response. (Repro-
duced courtesy Electromagnetic Academy, United States.)

Figure 4.35  Frequency responses of filters shown in Figure 4.34.(Reproduced courtesy Electromag-
netic Academy, United States.)
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Appendix 4A

The steps involved in Darlington’s method for the synthesis of a doubly terminated 
passive network are as follows [30].

Consider the doubly terminated two-port network shown in Figure A4.1.
__________________________________________________________________
Step  Given |S21|2 or equivalent, R1 and R2 [30]
__________________________________________________________________

1.	 Test the requirement, |S21(jω)|2< 1 or an equivalent condition such as 
( )
( )

2

2 2

14s

V j R

V j R

ω

ω
≤ . If this condition is not satisfied, then it is necessary to scale 

|S21|2.
2.	 Obtain 

Figure 4A.1  Doubly terminated two-port network.
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3.	 Form
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	 by letting jw = s
5.	 Form ( ) ( )
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p s
S s

q s
= ±  by taking the left-half plane zeros of B(–s2), and either 

left-half plane or right-half plane zeros of C(–s2).
6.	 Obtain
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m n S s S s
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	 (4A.3)

	 where mi, and ni(i = 1,2) are the even and odd parts of the numerator and 
denominator polynomials, respectively, of the input impedance function.

7.	 Examine the roots of  m1m2 – n1n2 = 0. If all zeros are at the origin or at 
infinity, then develop Zin(s)as a ladder (see Section 4.2.2). If all zeros are 
on the imaginary axis, test to see if Fujisawa [31] conditions are satisfied. 
Then develop the network by Darlington’s method shown below.

 4A.1.1  Darlington Synthesis [17]

Consider the two-port network in Figure 4A.1. The driving point impedance of the 
network can be expressed in terms of the Z-parameters as 

	 ( ) ( ) ( )
( )

2
22

11
22 2

1

in

R
y s

Z s z s
z s R

 
+ 
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	 (4A.4)

where for a reciprocal network

	 ( ) ( )
( ) ( ) ( )
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22 2

11 22 12

z s
y s

z s z s z s
=

−
	 (4A.5)

From (4A .3) we distinguish two cases:
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If we assume that right-hand side of (4A.3) is a positive real function, then the fol-
lowing function is also positive real:

	 ( ) 1 2

2 1

m n
Z s

m n

+
=

+
	 (4A.7)

Also, the numerators and the denominators of the right-hand sides of (4A.3) and 
(4A.6) are Hurwitz polynomials [7]. The ratio of the even part to odd part or odd 
part to even part 

	

1 1 1 1

1 2 1 2

1 2 2 1

, , ,
m m m m

n n n n

± ± ± ±
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               	

are all reactance functions. The continued fraction expansions of the functions yield 
real and positive coefficients. That is the input impedance of a one-port network. 
Assuming R1 = R2 = 1Ω and comparing (4A.4), (4A.5), and (4A.6) gives the Z-
parameters of the network, as shown in Table 4A.1.

In order for  z12(s)to be realizable, the quantity under the square root sign must 
be a full square. Or in other words, its s2 zeros must be of even multiplicity. In case 
it is not, it can be remedied by multiplying the ensignant by an auxiliary even poly-
nomial that contains all the first-order factors that occur in the ensignant with odd 
multiplicity. The multiplying polynomial is assumed to be a Hurwitz polynomial 
[7]. Let us consider the example

Table 4A.1  z-Parameters for Darlington’s Procedure
Case A Case B
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in which 

	 ( )( )− = − = + −2
1 2 1 2 1 4 1 2 1 2««« 	

Therefore, we choose

	 ( )( )2 2
0 0 1 2 1 2m n s s− = + − 	 (4A.9)

In the next step, we multiply the numerator and the denominator of the right-hand 
side of (4A.8) by 

	 0 0 1 2m n s+ = + 	 (4A.10)

which gives
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Using the equations in Table 4A.1 and (4A.11) gives
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The Darlington realization of the network is shown in Figure 4A.2.
In principle, z11, z22, and z12 can be expanded in the forms

Figure 4A.2  Darlington realized network.
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where, 0 , , andij ij ijk k kν∞  (i = 1,2 and j = 1,2) are the residues at the poles at s = 0, ∞, 
jω, respectively. The realizability condition for zij(s)’s is given by [30]

	 11 22 12 0r r rk k k− ≥ 	 (4A.13)

where r = 0, ∞ and ν.
When all the zeros of transmission are at the origin and/or at infinity, then the 

LC ladder network should be found by a continued fraction expansion, as shown 
in Section 4.2.2 (Butterworth or Chebyshev response). If all the transmission zeros 
are on the imaginary axis, then the synthesis problem reduces to realizing a z11(s), 
whose shunt branches resonates at the zeros of z12(s). It can be shown that the zeros 
of z12(s) are also the transmission zeros of the network [30]. From Table 4A.1 the 
zeros are also the solution to the equation

	 1 2 1 2 0m m n n− = 	 (4A.14)

The realized z11(s) has the network form shown in Figure 4A.3. The network is 
known as a midseries network. According to Darlington [17] and the form given 
by Lin and Tokad [32], the values of the components comprising the network are 
obtained from a partial fraction expansion as follows.

We define

	 ( )11z s
F

s
=

	 (4A.15)

Figure 4A.3  Midseries low-pass configuration.
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and
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We exapnd F(ζ) as
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with
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where
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The dual form the network, known as midshunt low-pass prototype, shown in 
Figure 4A.3 and Figure 4A.4, can also be used to realize the same transfer function.

Figure 4A.4  Dual form of midshunt low-pass prototype.
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The corresponding continued fraction expansion for the driving point admit-
tance is given by [5, 17]
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where
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and

	 0 1, 1,2, ,i i i iL C for i nζ ζ= ≤ ≤ =  	 (4A.24)

Also
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If all the transmission zeros are on the imaginary axis, then the synthesis problem 
reduces to realizing a y11(s), whose series branches resonates at the zeros of y12(s). It 
can be shown that the zeros of y12(s) are also the transmission zeros of the network 
[17]. Zhu and Chen [33] present the method and a FORTRAN code.



C H A P T E R  5 

Theory of Distributed Circuits

The lumped element synthesis techniques described in Chapter 4 are valid for all 
frequencies. However, physical realization of true lumped elements at microwave 
frequencies poses a number of obstacles. First, the required largest physical dimen-
sion of an element has to be much smaller than the wavelength so that the phase 
shift over that dimension should be negligible for all practical purposes. Second, the 
unloaded Q-factor becomes unacceptably small due to the small size of the element. 
Finally, the power-handling capability of a small element becomes very small due to 
the size. In order to circumvent the above difficulties, the size of an element is kept 
large enough and the fact that there occurs appreciable phase shift over any dimen-
sion of the element is taken into consideration while designing the element involved. 

5.1  Distributed Element Equivalence of Lumped Elements

The discussion of distributed elements begins from the input impedance of a section 
of a transmission line that has been terminated either by a short circuit or an open 
circuit. Consider a section of transmission line of length l, characteristic impedance 
Z0, and propagation constant β that has been terminated by a load ZL, as shown in 
Figure 5.1. The input impedance of the line for  ZL = 0(short circuit) is

	 = 0 tan( )SC
inZ jZ lβ 	 (5.1)

If we write

	 = Ωtan( )lβ 	 (5.2)

then (5.1) becomes

	 0
SC
inZ jZ= Ω 	 (5.3)

and has the characteristics of a reactance of an inductor of value Z0 and frequency 
Ω. However, like the frequency variable  in lumped element network theory, the 
frequency variable Ω is not a linear function of frequency f. In fact, it is a transcen-
dental function of frequency f. If 
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	 2 fβ ω mε π mε= = 	 (5.4)

where µ and ε are the permeability and the permittivity, respectively, of the medium 
between the two conductors, then

	 ( )tan 2 f lπ mεΩ = 	 (5.5)

Obviously the frequency mapping based on the above equation is not only nonlin-
ear but also periodic. However, when the right-hand side of (5.5) is expanded in a 
series, it gives

	 ( ) ( )3

3
2

2
3!

l
l f f

π mε
π mεΩ = + + 	 (5.6)

If the higher-order terms on the right-hand side of the above equation are neglected, 
then the mapping becomes linear and nonperiodic. But we can do so only if the 
operating frequency is so small that the term ( )2 l fπ mε  is sufficiently accurate to 
approximate the tangent function in (5.5). In other words, the phase shift over the 
length l of the element should not only be less than, but also be much less than 90°. 
Under such conditions, (5.3) assumes the form

	 ( ) ( )0 02SC
inZ jZ l f j Z lmε π mε ω= = 	 (5.7)

which is the reactance of an inductor 

	 0L Z l mε=  (henry)	 (5.8)

Starting our analysis from the input impedance of an open circuit transmission line 
and using the same line of arguments, it can be shown that the equivalent capaci-
tance of a small section of open-circuited transmission line of characteristic imped-
ance Z0, propagation constant β, and length l is

	
mε

=
0

(farads)C l
Z

	 (5.9)

Figure 5.1  Terminated transmission line.
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Therefore, once again we arrive at the same conclusion that we have to keep the 
maximum dimension of the element (inductor or capacitor) much smaller than the 
operating wavelength. One would wonder at this point what price the designer 
has to pay if a less than quarter-wavelength-long short-circuited transmission line 
is used to simulate an inductive reactance or a less than quarter-wavelength-long 
open-circuited transmission line is used to realize a capacitive reactance. Let us con-
sider the lumped element low-pass filter shown in Figure 5.2. The filter is a Cheby-
shev filter with –0.1-dB ripple and 2-GHz cutoff frequency. The element values can 
be computed using normalized g-values (lumped element low-pass prototype values 
described in the previous chapter). The series inductors offer 51.5724Ω inductive 
reactance at the cutoff frequency 2 GHz and the shunt capacitor offers 43.58 Ω 
capacitive reactance. The inductive reactances can be realized by a short-circuited 
λ/8-transmission line of characteristic impedance 51.5724 Ω and the capacitive re-
actance can be realized by an open-circuited λ/8-transmission line of characteristic 
impedance 43.58 Ω. The transmission line implementation of the filter is shown in 
Figure 5.3.

Although the above network is mathematically exact, it will pose two problems 
when physically implemented. Those are

1.	 The frequency response will not be that of a true low-pass filter because the 
stopband will not extend to infinite frequency due to the periodic nature 
of the reactances offered by the transmission lines. In fact, there will be 
an infinite number of passbands and stopbands between zero and infinite 
frequencies, with the first one being the desired passband.

Figure 5.2  Lumped element Chebyshev low-pass filter.

Figure 5.3  Transmission line equivalent of circuit shown in Figure 5.2.
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2.	 In most cases, it may not be possible to fabricate the series short-circuited 
transmission line sections.

There is no solution to problem 1. This is the price one has to pay in order to use 
distributed elements in a microwave network. However, the problem becomes a 
blessing in disguise because a spurious passband of a low-pass filter can be used as 
the desired passband of a band-pass filter. Similarly a spurious stopband of a low-
pass filter may be used as the desired stopband of a bandstop filter. We discuss these 
issues in later chapters on band-pass and bandstop filter design. In the following 
sections we will describe the important concepts of Kuroda identity [1] and trans-
mission line elements (TLEs) or unit elements (UEs) [2]. 

5.2   TLE or UE and Kuroda Identity

By definition, a TLE or UE is a section of transmission line of electrical length q and 
characteristic impedance Zc. The ABCD matrix of a unit element is given by

	 [ ]
cos sin

sin cos

c

c

jZ
T j

Z

θ θ

θ θ

 
 =
 
 

	 (5.10)

In terms of the transformed frequency Ω defined by (5.2), the above equation can 
be written as

	 [ ]
2

1
1

11

c

c

jZ
T j

Z

Ω 
 = Ω + Ω  

	 (5.11)

The uniqueness of the above ABCD matrix lies in the fact that the multiplying fac-
tor of the matrix 21 1 + Ω  is an irrational function of the transformed frequency 
variable Ω. However, when two such UEs are cascaded, the ABCD matrix of the 
resulting network becomes a rational function of . Consequently, the established 
lumped element network synthesis becomes applicable to distributed element net-
work synthesis when it involves an even number of UEs. Let us consider a UE 
followed by a series short-circuited transmission line, as shown in Figure 5.4. The 
ABCD matrix of the combined network is given by

Figure 5.4  UE cascaded to a series short-circuited transmission line.
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( )3 4

/ 2
4

3 3

1

1

j Z Z
T Zj

Z Z

 + Ω
   =  ΩΩ   −    

	 (5.12a)

Let us then consider a combination of a shunt open-circuited transmission line and 
a UE, as shown in Figure 5.5. The ABCD matrix of the overall network is

	
2

/ /
22

1 2 1

1

1 1
1

jZ

T Z
j

Z Z Z

Ω 
   =       + Ω − Ω        

	 (5.12b)

In order to establish the equivalence between the networks shown in Figures 5.4 
and 5.5 we equate the ABCD matrices in (5.12a) and (5.12b) and obtain the follow-
ing relationships among the element values of the two networks:

	
2
3

1 3
4

Z
Z Z

Z
= + 	 (5.13a)

	 2 3 4Z Z Z= + 	 (5.13b)

Also solving the above equations for Z3 and Z4 gives

	 1 2
3

1 2

Z Z
Z

Z Z
=

+
	 (5.14a)

	
2
2

4
1 2

Z
Z

Z Z
=

+
	 (5.14b)

The above equivalence is such that the behaviors of the two networks are identical 
at all frequencies. This is known as Kuroda’s identity [1]. Kuroda’s identity using 

Figure 5.5  Shunt open-circuited transmission line cascaded to a UE.
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UEs is extremely useful in converting unrealizable distributed element networks 
into realizable ones. As an example, let us apply the identity to the low-pass filter 
shown in Figure 5.3. Figure 5.6(a) shows that we have cascaded a section of trans-
mission line of impedance 50 Ω and length λ/8 (UEs) at the input and output of the 
filter, respectively. An application of Kuroda’s identity transforms the network into 
the one shown in Figure 5.6(b), which is physically realizable without any problem. 
However, the only difference between the networks shown in Figure 5.3 and 5.6 is 
that the transfer function of the latter has an extra 90° phase shift due to the addi-
tion of two λ/8 transmission lines. 

5.3  Effects of Line Length and Impedance on Commensurate Line 
Filters

In the above sections for distributed networks, we arbitrarily assumed the line 
lengths to be λ/8. However, we also had the choice of a shorter or a longer line 
and correspondingly higher or lower line impedances, respectively. For instance, 

Figure 5.6  (a) Low-pass filter cascaded with UEs at the two ports, and (b) low-pass filter of Figure 
5.6(a) after Kuroda’s transform.
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we could choose all line lengths equal to λ/4 and the characteristic impedance of 
69.635 Ω for the first and the last shunt stubs, 30.815 Ω for the center stub, and 
71.82 Ω for the two series stubs. In that case, it would be easier to physically realize 
the transmission lines, especially when planar transmission lines like microstrip or 
striplines are used. But due to the longer lines, resonance in a line will occur at a 
much lower frequency spacing and the first spurious passband will be situated at a 
frequency closer to the desired passband. This will result in a narrower stopband. 
Therefore, the choice of line length is a trade-off between physical realizability and 
the stopband width. In a commensurate line filter, all transmission line elements 
have the same electrical length at any frequency. A type of filter exists in which dif-
ferent TLEs have different electrical lengths at any frequency. Such filters are called 
noncommensurate line filters and have certain advantages over commensurate line 
filters. Having discussed a few important points regarding commensurate line filters 
we will now present the general analytical formulas that are useful in the design 
of such filters. For the finite commensurate line filter the transfer function can be 
expressed as a rational polynomial of the form
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	 (5.15a)

where

	 l j l l j l l jα β α ω εm α θΘ = + = + = + 	 (5.15b)

and tanh(Q) may be regarded as the generalized complex frequency used in distrib-
uted line analysis. We may write

	 tanh( )S j= Θ = Σ + Ω 	 (5.16)

In the case of a lossless line, Σ = 0. Therefore,

	 ( )tan tanS j j j lθ β= Ω = = 	 (5.17)

Therefore, (5.15) assumes the form
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Equation (5.18) can be compared with the following equation for the transfer func-
tion of a lumped element filter:
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	 (5.19)

However, since the mapping from ω to Ω involves the trigonometric function tan(q), 
the transfer function S21{tan(q)} or S21(Ω) or will have a periodic behavior in the q 
or ω domain. Figure 5.7 compares the frequency response of an ideal lumped ele-
ment low-pass filter with that of its distributed element counterpart and q0 is the 
electrical length of the lines corresponding to the radian frequency ω0.

Distributed element networks belong to four categories:

1.	 Cascaded UE networks;
2.	 UE and shunt low-pass networks;
3.	 UE and shunt high-pass networks;
4.	 UE with inverters.

The first type of circuit does not have any transmission zero at any frequency, while 
the second type has a transmission zero at S = 0, and the third type has a transmis-
sion zero at S = ∞. It can be shown that a distributed element network must have 
the transducer gain function of the form [3]

	 ( ) ( )
( )

2
2

21 2

1
nm

m

m n q

K S S
S S

P S+ +

−
= 	 (5.20)

The denominator of the right-hand side  Pm+n+q(S) is a strictly Hurwitz polynomial, 
m is the number of high-pass elements, n is the number of unit elements, and q is 

Figure 5.7  Comparison of ideal and distributed low-pass filter responses.
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the number of low-pass elements. Km is a constant such that the modulus of the 
transducer gain is less than or equal to unity.

The above four types of low-pass filters can be realized at microwave frequen-
cies and each has its own merits and demerits. For planar filter realization using mi-
crostrip, stripline, suspended stripline, and coaxial line, the cascaded UE filters find 
the most applications. Such a filter offers wide stopbands if the electrical length of 
each section is chosen sufficiently small. Using m = q = 0 in (5.20) gives
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Using 
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in (5.21) gives
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For a Butterworth or maximally flat response, the above equation assumes the form
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where qc is the electrical length of the transmission line at the cutoff frequency of 
the filter. Note that at q = qc
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	 (5.25)

For a Chebyshev or equal ripple filter
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The cascade of unit elements is shown in Figure 5.8. This is an ideal representation 
of a cascaded transmission line low-pass filter network. The designer has to keep in 
mind that since it is a cascade of several transmission lines of different characteristic 
impedances, and adjacent lines have widely different impedance values, significant 
physical discontinuity occurs between any two consecutive lines. Such discontinui-
ties are inductive and capacitive in nature and of large values that affect the filter 
performance considerably unless they are compensated for. Design formulas for a 
cascaded UE low-pass filter or stepped impedance low-pass filter are [4]

Butterworth (Rg = RL = 1)
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where the last term η2 + sin2(0) is replaced by η. As a result
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5.3.1  Design Example

Design a stripline stepped impedance low-pass filter with the following specifications:

Passband ripple = 0.043 (–20 dB RL)

Cutoff frequency = 1.00 GHz

Number of sections N = 5

Substrate thickness = 0.062”

Section length qc = 30°
At cutoff, q = qc = 30°

Therefore, from (5.27), we get

	
2

2 2

11 21 2 2

1
1 1

1 1
S S

ε

ε ε
= − = − =

+ +
	 (5.30)

Figure 5.8  UE low-pass prototype.
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Also, from the given specifications

	 ( )2

11««« S = − 	 (5.31)

Solving (5.30) and (5.31) gives

	 0.1ε ≈ 	

Using (5.29a) through (5.29f), we get

	 = =1 5 0.0404 mhoY Y 	 (5.32a)

	 = =2 4 0.0085 mhoY Y 	 (5.32b)

	 =3 0.0648 mhoY 	 (5.32c)

Figure 5.9 shows the computed frequency response of the realized stripline filter us-
ing 3-D simulation. Figure 5.10 shows the 3-D view and dimensions of the layout 
of the filter. The strip widths were obtained by using (3.58) through (3.61). It can 
be seen that the analyzed filter has a cutoff frequency at 850 MHz instead of 1.00 
GHz. This is due to the parasitic inductive reactance caused by the step discontinui-
ties between different adjacent transmission lines.

The error in the cutoff frequency can be corrected by reducing the lengths of 
the high impedance lines and iteratively checking the response using a full-wave 
simulator [5]. Figure 5.11 shows the coaxial line version of the same filter. How-
ever, an important difference between the two implementations is that in the co-
axial filter, the basic design from the low-pass filter has been optimized to have 
only two levels of impedance. Consequently all high-impedance sections have the 
same diameter and all low-impedance sections have the same diameter. At the same 

Figure 5.9  Computed frequency response of cascaded UE stripline low-pass filter.
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time, different high-impedance lines have different electrical lengths. Such struc-
tures are easier to implement than the ones having more than two impedance levels 
as obtained directly from the UE prototype. The filter was analyzed and optimized 
using WAVECON-Procap software [6]. A designer can also design the second type 
of filter, which is a noncomensurate line filter, directly by using the synthesis option 
in WAVECON [6]. 

5.3.2  Low-Pass Filter Prototype with a Mixture of UEs and Impedance 
Inverters

Cascaded UE low-pass filters are easy to implement using TEM or quasi-TEM 
transmission lines. For non-TEM transmission lines, a mixture of UEs and imped-
ance inverters is the most efficient way to implement a low-pass filter. Examples of 
non-TEM transmission lines include waveguides, ridged waveguides, and finlines. 
Figure 5.12 shows the general configuration of a mixed UE inverter prototype net-
work. The low-pass prototypes for a mixed UE and inverter are [7]

Figure 5.10  (a) Layout of stripline low.pass cascaded UE filter, and (b) 3-D view of a stripline low-pass filter 
(substrate thickness = 62 mils, εr = 2.2).
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Figure 5.11  (a) Coaxial line version of a modified cascaded UE low-pass filter, and (b)  frequency response 
of the filter shown in Figure 5.11(a).

Figure 5.12  Mixed UE inverter distributed prototype network.
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The most common application of mixed UE inverter distributed prototype net-
works is a waveguide harmonic-reject low-pass filter. Figure 5.13 shows the height 
profile of such a filter. The width of each section of the filter remains the same. Each 
vertical slot acts as a K-inverter. 

The filter can also be realized using a ridged waveguide structure, as shown in 
Figure 5.14. While the full-height waveguide filter is suitable for high-power ap-
plications, the ridged-waveguide version offers a compact structure for low-power 
applications. In the latter version, the slots in the evanescent mode waveguide of 
reduced height waveguide sections realize the K-inverters. 

The ABCD matrix of the slot is analyzed by using the mode-matching tech-
nique described in Chapter 3. Once the ABCD matrix is known, the K-inverter 
values obtained from (5.33) or (5.34) are normalized as
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Figure 5.15 shows that the slot discontinuity not only realizes the inverter but also 
contributes the extra phase lengths f1 and f2. Therefore, the implementation of 
adjoining UEs must take into consideration the phase lengths. For example, if the 
phase lengths f1 and f2 are positive, the UEs on both sides of the slot must be 
shortened accordingly. The impedance inverter value is calculated from the ABCD 
parameters of the slot using the following equations [8]:

	 { }, 1 1 1r r r rK Z Z L L+ += + − 	 (5.36)

	 ( ) ( ){ }2 21
1

4
L a d b c= + − + − 	 (5.37)

	
1r

r

Z
a A

Z
+= 	 (5.38a)

Figure 5.13  Height profile of a mixed UE inverter distributed prototype waveguide low-pass filter.

Figure 5.14  Distributed prototype ridged waveguide low-pass filter.
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where f1 and f2 are in radians. The impedance inverter values can also be expressed 
directly in terms of complex scattering parameters, as follows:
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11

1

1

S
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S

+
=

− 	 (5.39a)

where S11 is the reflection coefficient seen at port one when the other port is ter-
minated in its characteristic impedance. The reference plane locations are given by

	 θ π
f = − +11

1 2 2
	 (5.39c)

Figure 5.15  (a) Slot and (b) equivalent circuits.



224	 ������������������������������Theory of Distributed Circuits

	 θ π
f = − +22

2 2 2
	 (5.39d)

where 11
11 11

jS S e θ=  and 22
22 22

jS S e θ= . q22 is the reflection coefficient seen at port 
two when the other port is terminated in its characteristic impedance. Figure 5.16 
shows the analyzed frequency response of a ridged waveguide evanescent mode 
low-pass filter. The filter was designed and analyzed using WAVEFIL software by 
Polar Waves Consulting [9]. Such filters can offer stopbands extending above the 
fourth harmonic of the passband. The only limitation of a ridged waveguide evanes-
cent mode low-pass filter is its power-handling capability. As a result it is useful in 
low-power applications. For medium-power applications, a corrugated height con-
ventional waveguide low-pass filter, shown in Figure 5.17, is suitable. The design of 
a tapered corrugated waveguide low-pass filter [10,11] is accomplished as follows.

The tapered corrugated low-pass filter consists of a cascade of generalized im-
pedance inverters connected by short sections of transmission lines, each of electri-
cal length q0. The generalized impedance inverter is realized by a capacitive iris. 
Figure 5.18(a) shows the general profile of a tapered corrugated low-pass filter. 
Figure 5.18(b) shows the equivalent circuit.

The common performance parameters of the filter are defined by the 

•• Cutoff frequency fc

Figure 5.16  Frequency response of X-band ridged waveguide low-pass filter.

Figure 5.17  Tapered corrugated low-pass filter.
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•• Fractional ripple bandwidth

	 θ

π
= 04

gw 	 (5.40)

where q0 is the electrical angle corresponding to the cutoff frequency of the 
low-pass filter.

•• Passband return loss, RL(dB)

•• Passband ripple, ε

•• Isolation bandwidth factor (γ), which is the ratio of the cutoff frequency fc 
and the stopband frequency fs and is given by

	 s

c

f

f
g = 	 (5.41)

•• Stopband isolation LA at fs.

In addition to the performance parameters, the cross-sectional dimensions of the 
waveguide (width and height), taper profile, iris thickness, and the number of 
modes to be considered form a part of the design specifications. Once the design 
parameters are obtained, the scaling factor is calculated as
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4

gwπ
α

 
=    	 (5.42a)

The impedances of the distributed elements are obtained as
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	 (5.42b)

Figure 5.18  Tapered corrugated low-pass filter profile and equivalent network.
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where N is the order of the filter. The K-inverter values are obtained from (5.33b) 
or (5.34b) and (5.35). However, the inverter values need to be further normalized 
due to the tapered height profile of the waveguide because each waveguide section 
has a different characteristic impedance due to a different height or b dimension. 
Therefore, the normalized k-inverter values are
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1 1
sinh sinhr rk

N ε
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+
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	 (5.42c)

In a uniform corrugated waveguide filter, the characteristic impedances of the in-
ductive sections are identical and hence we scale the impedance ZN to unity and the 
K-inverters are normalized as
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In tapered corrugated waveguide low-pass filters, the characteristic impedances of 
the inductive sections are not equal, and hence normalization of the K-inverter 
values with characteristic impedances is done so that the quantity 1r rK Z Z +  is 
made invariant when matching a practical network to a prototype. The normalized 
K-inverter values are
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with 

	 = −1,2, , 1r N 	 (5.42g)

and 
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rZ , the characteristic impedance of the rth waveguide section is given by 
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Considering the tapering of heights of each waveguide section, (5.35) can be writ-
ten as
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with

	
r

r

b

b
ξ = 	 (5.42j)

A number of tapering profiles are used in the tapered corrugated waveguide low-
pass filters. Those are as follows:

1.	 Square
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2.	 Cosine

	 ( ) ( )sin
1i c

i
t t t t

N
π  = − −  +  

	 (5.43b)

3.	 Exponential
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4.	 Linear
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In the above equations tc is the height of the central section of the waveguide and t 
is that of the input and output sections. The scattering matrix of each capacitive iris 
is analyzed by using a suitable numerical electromagnetic analysis method, prefer-
ably the mode-matching method described in Chapter 2. The impedance inverter 
value is obtained from (5.36) through (5.39). Finally, the section lengths between 
consecutive irises are obtained from
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 λg0 is the guide wavelength at the cutoff frequency of the filter and fr is obtained 
from (5.38) or (5.39). Table 5.1 shows the specifications and the synthesized dimen-
sions of the filter. Figure 5.19 shows the computed frequency response of a corru-
gated waveguide low-pass harmonic rejection filter. 

Corrugated waveguide harmonic reject filters are quite popular for their mod-
erate power-handling capability and simple configuration. However, the main pit-
fall lies in the construction of the filter. Any misalignment whatsoever gives rise to 
higher-order TEn0 type modes with significant amplitude in the desired stopband. 
Consequently, manufacturing tolerance is a significant issue in realization of cor-
rugated waveguide filters. The occurrence of higher-order or mode spikes in the 
stopband is given by

	 ( )2 2 2
1 11 2,3,n cf f n f n= + − =  	 (5.44)

where f1 is the frequency above f01 (cutoff frequency of the low-pass filter), at which 
the dominant mode attenuation is a few decibels and fc1 is the cutoff frequency of 
the dominant mode of the waveguide. The appearance of undesired higher-order 
mode problem is compounded when the height (the b dimension) is increased in 
order to raise the power-handling capability. Figure 5.20 shows a waffle-iron fil-
ter and its assembly. In that case not only the TEn0 but also the TE1n modes come 
into play. Higher-order modes in a corrugated waveguide are suppressed by cutting 

Table 5.1  Specifications and Dimensions of a 
Tapered Corrugated Low-Pass Filter*
Number of sections, N = 9

Passband ripple level, Lr = 0.010 dB

Cutoff frequency, fo  = 9.000 GHz

Waveguide width, a = 22.860 mm

Waveguide height, b = 10.160 mm

Iris thickness, t = 1.000 mm

n dn (mm) rn (mm) bn (mm)

0 3.83183 10.04563 10.16000

1 1.29483 7.57539 10.16000

2 0.72952 6.66513 10.16000

3 0.61075 6.42297 10.16000

4 0.58059 6.37095 10.16000

5 0.58059 6.42297 10.16000

6 0.61075 6.66513 10.16000

7 0.72952 7.57539 10.16000

8 1.29483 10.04563 10.16000

9 3.83183 — —

*Please see Figure 5.18 for definitions of terms
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multiple longitudinal slots in the corrugated waveguide filter. This process renders 
each capacitive iris into a section of multiple ridge waveguides, as shown in Figure 
5.20(a). A corrugated waveguide filter with mode-suppressing longitudinal slots 
is known as a waffle-iron filter [12–14]. As can be seen from the figure, the filter 
has a main center section with slotted and corrugated parts and two multisection 
stepped impedance transformers at the two ends. Like a corrugated waveguide fil-
ter, a waffle-iron filter can be designed using the same procedure. The overall filter 
response can be optimized using the mode-matching method. Figure 5.20(b) shows 
the mechanical assembly of a waffle-iron filter.

Figure 5.19  Frequency response of corrugated waveguide harmonic reject low-pass filter.

Figure 5.20   (a) Igut waffle-iron filter, and (b) mechanical assembly of a waffle-iron filter. (Reprinted 
with permission from Stellenbosch University, SA; courtesy Prof. Petrie Meyer and Ms. Susan Maas.)
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5.3.3  Quasi-Distributed Element TEM Filters

Besides coaxial line and waveguide technology, planar transmission line technology 
plays an important role in microwave low-pass filter realization. In many applica-
tions, a low-pass filter with very steep skirt selectivity (around –70 dB within above 
10% of the cutoff frequency) is a necessity. Typical examples are cellular radio 
base stations and radar warning receiver multiplexers. Conventional Chebyshev 
filters are inadequate for these types of applications. As a result, a pole extraction 
technique using elliptic or generalized Chebyshev responses, described in Chapter 
4, is used. Figure 5.21 shows the general lumped element prototype of an elliptic or 
generalized Chebyshev filter. The element values are obtained by using the method 
described in Chapter 4 or the NTK-CKTTOOL software [15].

The first step is to scale the prototype values to actual terminating impedances 
and the cutoff frequency because the prototype shown in Figure 5.21 is valid for 
1W terminating impedances and 1-radian/sec cutoff frequency. The procedure is as 
follows:

Impedance scaling
Let Rg = RL = R. Then

1.	 Replace all inductors by 

	 r rL L R=′ 	 (5.44a)

2.	 Replace all capacitors by

	 r
r

C
C

R
=′ 	 (5.44b)

3.	 Replace all resistors by

	 r rR R R=′ 	 (5.44c)

Frequency scaling
Let the actual cutoff frequency be ω = ωc radians/sec. Then

1.	 Replace all inductors by

	 c r
r

c

L
Lω

ω

′
= 	 (5.45a)

Figure 5.21  Low-pass prototype of elliptic or generalized Chebyshev filter.
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2.	 Replace all capacitors by

	 c r
r

c

C
Cω

ω

′
= 	 (5.45b)

Having performed the impedance and frequency scalings, replace the series induc-
tors by a short section of very high-impedance transmission line (microstrip, strip-
line, or suspended stripline) of length
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where Zr is an arbitrarily chosen but very high and physically realizable impedance. 
The shunt capacitances are replaced by a short sections of transmission line of char-
acteristic impedance Zr and length 
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Obviously, since transmission lines of different lengths and impedances realize dif-
ferent elements of the filter, the filter is a noncommensurate line filter. Also, the 
designer should note that βr and Zr are mathematically related in case of inhomo-
geneous transmission lines such as microstrip and suspended stripline. When using 
homogeneous transmission lines such as stripline or coaxial line, βr and Zr are 
mathematically unrelated. An open-circuit quarter-wavelength stub of characteris-
tic impedance Z0 replaces the series resonant shunt elements comprising of L and 
C. Z0 is given by

	
0

4 L
Z

Cπ
= 	 (5.46c)

Note that all open-circuited stubs must be shortened owing to the effects of open-
end capacitance. Also all line lengths should be adjusted to nullify the effects of the 
T-junction and step junction discontinuities (see Chapter 3). 

Shunt series resonant circuits can also be realized using a compound stub. A 
compound stub is a combination of a UE and an open stub. The transformation of 
series shunt element into a compound stub is shown in Figure 5.22. The equiva-
lence uses Kuroda identity and the element values are given by

	 UE L CZ Z Z= + 	 (5.46d)
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	 ( )C
stub L C

L

Z
Z Z Z

Z
= + 	 (5.46e)

In today’s world of computer-aided design, it is not necessary to manually perform 
the above computations in order to design a planar low-pass filter. For example, 
WAVECON [6] is an excellent tool for this purpose. Table 5.2 shows the WAVE-
CON analysis and design file of a stripline elliptic low-pass filter realized on a 62-
mils RT-DuroidTM substrate (εr = 2.22). Figure 5.23(a) shows the layout of the filter 
and Figure 5.23(b) shows the computed frequency response.

The above technique of realizing a low-pass filter can be used with any suitable 
planar transmission line medium. The basic rule for realization of quasi-lumped 
elements remains the same for all such transmission lines. One such transmission 
line that offers the convenience of printed circuit board techniques and the highest 
Q-factor among most planar transmission lines is the suspended microstrip line. 
The subject of suspended microstrip line has been described in detail in Chapter 
3. The discontinuities involved in suspended microstrip line filters can be approxi-
mated by the corresponding homogeneous stripline discontinuities for all practical 
purposes, provided that the substrate is thin and the dielectric constant is low and 

Figure 5.22  Commensurate equivalent of a shunt series resonant circuit.

Table 5.2  Wavecon Analysis and Design File for Stripline Low-Pass Filter
Stripline Shunt Stub Low-Pass Filter

5.0000 GHz Cutoff 
Frequency

5.0000 GHz Bandwidth

0.0430 dB Ripple 5 Poles

0.0400 Inches Ground-
plane Spacing

2.2200 Dielectric 
Constant

0.0005 Inches Conductor 
Thickness

62.673 Ohms Internal 
Impedance

50.000 Ohms Input Line 
Impedance

0.0314 Inches Input Line 
Width

50.000 Ohms Output Line 
Impedance

0.0314 Inches Output 
Line Width

Sect 
Numb Element Value

Zshunt 
Ohms Zseries Ohms

Lshunt 
Inches

Lseries 
Inches

Wdth-Shnt 
Inches

Width-Ser 
Inches

1 0.9705 36.373 — 0.1531 — 0.0499 —

2 1.3719 — 107.98 — 0.1894 — 0.0059

3 1.8004 36.373 — 0.2421 — 0.0499 —

4 1.3719 — 107.98 — 0.1894 — 0.0059

5 0.9705 36.373 — 0.1531 — 0.0499 —
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the strips are symmetrically placed between the top and bottom ground planes. 
However, the overall circuit can be optimized using full-wave analysis [5].

5.4  High-Pass Filter Design

A true high-pass filter is realized in lumped element form only. Any distributed 
element high-pass filter behaves like a wideband band-pass filter. In microwave 
technology, the art of high-pass filter realization differs considerably when lumped, 
TEM element, or waveguide elements are used. However, in many applications a 
wideband band-pass filter is used instead of a high-pass filter. 

5.4.1  Low-Pass to High-Pass Transformation

Consider the frequency response of a low-pass filter with cutoff frequency at ωc 
radians/sec, shown in Figure 5.24. From (4.29) the general equation for the transfer 
function shown in Figure 5.24 can be written as 

Figure 5.23  (a) WAVECON layout of an extracted pole stripline low-pass filter, and (b) WAVECON 
analyzed frequency response of the low-pass filter shown in Figure 5.23(a).



234	 ������������������������������Theory of Distributed Circuits

	
( ) 2

21
2

1

1
c

S

F

ω
ω
ω

=
 

+   
	 (5.47)

Replacing ω/ωc by ωc /ω in (5.47) gives
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where F is the approximation function defined in Section 4.2, which is the transfer 
function of a high-pass filter with cutoff frequency at ωc. Figure 5.25 shows the 
graphical representation of (5.48). Let us reconsider Figure 4.6 of a low-pass pro-
totype circuit, as shown in Figure 5.26.

The above networks assume the forms shown in Figure 5.27 when low-pass 
to high-pass transformation is applied. Figure 5.28 shows the high-pass prototype 
circuit with impedance inverters. 

Derivation of element values in the above networks follows the same procedure 
as described for low-pass prototypes in Chapter 4. However, such a derivation is 
preceded by low-pass to high-pass transformation given by (5.47) and (5.48). 

5.4.2   Quasi-Lumped Element High-Pass Filter

At RF and microwave frequencies, a high-pass filter is easily realized using a quasi-
lumped element approach. In that approach, the series capacitors are realized in 
lumped element form and the shunt inductors are realized by a section of short-cir-
cuited transmission line. A coaxial line version of the filter is shown in Figure 5.29. 
The structure can be modeled and optimized using full-electromagnetic analysis. 
However, the initial design should use series gap discontinuity capacitance models 
for thick striplines for the capacitances (see (3.75) to (3.79)). In case the gap capaci-
tance is inadequate, one can use a disk capacitor (circular or rectangular, as shown 
in Figure 5.30) in place of the thick stripline gap. The capacitance of a circular disk 
capacitor is given by

Figure 5.24  General low-pass filter response.
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2
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r
C pf

d
π

ε ε= 	 (5.49)

Figure 5.25  Low-pass to high-pass transformation.

Figure 5.26  Low-pass prototype with unity cutoff and terminations.

Figure 5.27  Low-pass prototype transformed to high-pass.
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where ε0 = 0.225 pf/inch is the permittivity of free space. The length of a shorted 
coaxial line shunt inductor is obtained from

	 00.085 HenrysL Z l= 	 (5.50)

Figure 5.28  High-pass prototype involving impedance and admittance inverters.

Figure 5.29  Coaxial line high-pass filter.

Figure 5.30  Circular disk capacitor.
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All dimensions in the above equations are in inches. Although the capacitors are 
lumped, the inductors can be either shorted stubs or very short lumped inductors. 
The passband of the filter may not be very wide if stubs are used.

5.4.3  Levy’s Procedure for Planar High-Pass Filter Design

In 1982 Peter LaTourrette [16] proposed a method for the design of high-pass 
filters that accommodated the physical length of the series capacitors and thereby 
guaranteed more accurate prediction of passband return loss of the filter. His work 
presented several configurations that facilitated the practical realization of the fil-
ters particularly in suspended stripline. Based on Peter LaTourrette’s work, Ralph 
Levy presented a unified powerful procedure for the realization of planar high-pass 
filters [17] using suspended stripline. The design procedure is based on the homo-
geneous distributed prototype filter, shown in Figure 5.31. The transfer function of 
the filter may be written using the transformed variable theory of Robert Wenzel 
[18]. The variable W is defined in terms of Richard’s variable S via the conformal 
transformation

	

2
2

21
c

S
W = +

Ω 	 (5.51)

where

	 tanS j θ= 	 (5.52)

and q is the commensurate electrical length, and the transformed cutoff frequency 
Ωc is given by

	 tanc cj θΩ = 	 (5.53)

where qc is the electrical length at the equiripple passband edge. Figure 5.31 shows 
the Nth- (odd N) order prototype with (N–1)/2 shunt series resonant elements and 
transmission zero producing elements and (N+1)/2 UEs. All series capacitors pro-
duce a single-order pole at dc. Each shunt resonant element produces a double-or-
der transmission zero at a finite frequency S = jΩp. Each UE produces a single-order 
transmission zero at S = j1. The corresponding Chebyshev approximation problem 
is solved by forming the function
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Using the above equations, the equiripple transfer function becomes
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ε

+ −
= + 	 (5.55)

Figure 5.31 shows that each UE is followed and preceded by two identical ca-
pacitors. Therefore, the synthesis of the network from the transfer function has 
to be done accordingly. It starts with the extraction of a UE, followed by a partial 
extraction of a series capacitor of a value such that a shunt series resonant circuit 
can be extracted next. Using the Kuroda transform, a part of the series capacitor is 
transferred to the other side of the UE so that the two capacitors on both sides of 
the UE are equal. Then the series shunt resonators are extracted, and the extrac-
tion and Kuroda transformation cycle is repeated to form the entire network. Peter 
LaTourette [16] showed how to use a commercial circuit solver [19] to accomplish 
the synthesis. Figure 5.32 shows the evolution and physical realization of such 
high-pass filters is best done in suspended stripline or microstripline because the 
series capacitor values are usually too high to be realized by gap capacitors. Let 
us consider UEs with identical series capacitors on both sides, as shown in Fig-
ure 5.31. Figure 5.32 shows in a step-by-step fashion how a coupled line section 
with extra identical transmission lines on either side can represent the UE capacitor 
combination.

Figure 5.31  Homogeneous distributed high-pass filter.

Figure 5.32  Homogeneous prototype section and inhomogeneous coupled line section.
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Following the arguments in [17], the above network can be further simplified 
for all practical purposes as shown in Figure 5.33. In the approximate equivalent 
circuit, the following relations hold:

	 0
1

1
eZ

C
= 	 (5.56a)

	 0 0
12

e oZ Z
Z

−
= 	 (5.56b)

Solving the above equation, Z0e and Z0o are obtained. Knowing these values, direct 
synthesis equations (3.136) to (3.141) can be used for the dimensions if a homoge-
neous broadside-coupled suspended stripline, shown in Figure 3.29, is used. If the 
broadside-coupled suspended microstripline shown in Figure 3.39 is used, then an 
optimization-based synthesis routine should be used. Such a routine may use the 
models in (3.267) to (3.278). The quarter-wavelength frequency for all commensu-
rate line lengths, including the series ones, is chosen on the basis of the physical lay-
out or performance. However, it must be as high as the midpoint of the passband.

The shunt-series resonant circuits can be realized as compound stubs shown 
in Figure 5.22, using (5.46). The overall layout is shown in Figure 5.34. The de-
sign method will guarantee first-pass success if the junction parasitics of the trans-
mission line are correctly taken into consideration using accurate analysis of the 
designed circuit. However, using a full EM solver, the initial design based on the 
theory can be optimized before actual fabrication. 

Figure 5.33  Approximate equivalent circuit of an inhomogeneous coupled line section.

Figure 5.34  Pseudoelliptic planar high-pass filter. Solid and dotted lines represent conductor pat-
terns on either side of the broadside-coupled line.
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Besides Levy’s systematic approach one can also begin with the basic lumped 
element prototype and follow Peter LaTourrette’s procedure to arrive at the fi-
nal form of the circuit. Let us consider a 6 to 18 GHz high-pass filter that has 
greater than 60 dB rejection at a frequency 15% below the cutoff frequency. Figure 
5.35 shows the step-by-step procedure, starting from a lumped element prototype 
and then following Peter LaTourrette’s procedure to arrive at the final form of the 
circuit.

Levy designed the filter for the same specification but used five UEs instead of 
four. Figure 5.36 shows Levy’s prototype equivalent circuit and the layout of the 
circuit board in suspended stripline.

Figure 5.35  Step-by-step procedure starting from basic low-pass prototype. (a) Circuit configuration, (b) 
distributed equivalent, (c) distributed equivalent using UEs and Szentimei’s [19] software S/FILSYN, and (d) 
parallel-coupled line equivalence of a UE with identical stubs on both sides and offset broadside-coupled line 
realization.
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It is worthwhile to mention that RF and microwave high-pass filters can be 
realized in microstrip form very conveniently by using planar shunt stub inductors 
as well as resonant circuits and commercially available high-Q surface-mountable 
lumped chip capacitors.

Figure 5.36  (a) Equivalent circuit of Levy’s five-unit element design. C1 = 11,088, C2 = 4.3539, C3 = 4.7867, 
C4= 5.9081, C5 = 4.6494, Z1 = 1.0801, L2 = 4.4497, Z3 = 1.0640, L4 = 3.2791, Z5 = 1.0629. (b) Layout of 
the circuit board. Substrate thickness = 0.015 inch, ground plane spacing = 0.100 inch, substrate εr = 2.22. 
(c) Measured frequency response of a 6 to 18 GHz filter. (Courtesy of Dr. Ralph Levy.)
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5.4.4  Waveguide High-Pass Filter Design

Waveguide high-pass filters are best designed by using a section of below-cutoff 
waveguide. Since the waveguide operates in the evanescent mode, it acts like an at-
tenuator where the attenuation depends on the length of the section. The propaga-
tion constant of a waveguide is given by

	
2 2

0

2 2
Nepers/unit length

c

π π
g α

λ λ

   
= − =      

	 (5.57)

where λ0 is the operating and λc is the fundamental mode cutoff wavelength of the 
waveguide. When the operating frequency is below the cutoff frequency, then  λc 
> λ0. Consequently a is a positive real number. If the physical length of the below-
cutoff waveguide is l, then the wave will undergo an attenuation of 8.686 al dB. 
Exactly at the cutoff frequency of the waveguide the waveguide will switch to a 
propagating mode and the wave will propagate unattenuated above the cutoff. 
Therefore, if the width of the waveguide is so chosen as to have the same fundamen-
tal mode cutoff frequency as the desired cutoff frequency of the high-pass filter, then 
the structure will behave as the desired high-pass filter and the stopband attenua-
tion can be controlled by controlling the length of the waveguide. The guide-width 
at either end of the filter can be matched with standard propagating waveguides 
using taper transitions, as shown in Figure 5.37. The overall filter can be optimized 
using mode,matching or any other suitable method. As an example, let us consider 
the design of an X-band high-pass filter with cutoff at 8.33 GHz. The width of a 
rectangular waveguide with fundamental mode cutoff at 8.33 GHz is 18 mm (λc = 
36.00 mm). Figure 5.38 shows the frequency response of a 60-mm long section of 
the waveguide. The simulation and optimization of the filter was obtained by using 
the mode-matching method based software WASP-NET from Microwave Innova-
tion Group in Germany [25]. 

Figure 5.37  Rectangular waveguide high-pass filter.



5.5  Band-Stop Filter Design	 243

5.5  Band-Stop Filter Design

Rejection of an undesired band of frequencies in a microwave system is, in most 
cases, accomplished by the use of a low-pass, high-pass, or band-pass filter. How-
ever, in certain cases, the rejection of a relatively narrow band of frequencies with 
very high rejection levels cannot be achieved without the use of a band reject or 
band-stop filter. By definition [20], a band-stop filter must pass signals below and 
above a pair of specified passband edge frequencies (ω1, ω2) with a specified return 
loss and it must reject or attenuate signals between stopband edge frequencies (ω3, 
ω4) by specified values of minimum loss where ω1 < ω3,< ω4 < ω2. The band-stop 
filter designer will obtain these values from the imposed requirements for the filter, 
modifying them to include margins for practical tolerances, tuning capability envi-
ronmental conditions, and any other rule of thumb based on experience. 

5.5.1  Low-Pass to Band-Stop Transformation

Let us reconsider the basic low-pass prototype as shown in Figure 5.39. 
Using the frequency transformation [21]

	
0

1 0

1 1 ωω

ω ϖω ω ω

 
= − ′ ′   	 (5.58a)

where ω´ is the radian frequency of the low-pass prototype filter and ω is that of the 
band-stop filter. The rest of the parameters are defined in Figure 5.40, which is the 

Figure 5.38  Frequency response of X-band rectangular waveguide high-pass filter (WASP-NET 
analysis).
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response of the prototype band-stop filter obtained from using the above frequency 
transformation in the low-pass response in Figure 5.39.

	
0 1 2ω ω ω= 	 (5.58b)

Figure 5.39  Basic low-pass prototype network and the response.

Figure 5.40  Frequency response of band-stop prototype.
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	 2 1

0

ω ω
ϖ

ω

−
= 	 (5.58c)

Table 5.3 summarizes the above mapping. Figure 5.41 shows the correspond-
ing band-stop filter networks

The element values of the band-stop filter prototype are given by

	 0
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1 1
i i

i i
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C g

ω
ω ϖω

= = =
′ 	 (5.59)

for series branches

	 0
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ω
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′ 	 (5.60)

Table 5.3  Low-Pass to Band-Stop Mapping Table
ω´ ω

0 or ∞
1

2 2

1,2 01 1
4 2 2

ϖ ϖ ϖ
ω ω ω∞

     = + ± ≈ ±           when π << 1

ω0

Figure 5.41  Band-stop filter prototype networks.
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for shunt branches.
The reactance slope parameter x of a reactance X = ωL–1/ωC at ω0 is 

	
0

0
0

0

1
2

dX
x L

d Cω ω

ω
ω

ω ω=

= = = 	 (5.61)

and the susceptance slope parameter b of a susceptance B = ω0C–1/ω0L at ω0 is 
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= = = 	 (5.62)

The above results are included in (5.59) and (5.60). The networks shown in Figure 
5.41 have the same impedance levels as the corresponding low-pass prototypes in 
Figure 5.39. However, when the impedance level is different, then each L and R 
has to be multiplied by the new impedance and each G and C should be divided 
by the new impedance. Once again, prototypes involving inverters (impedance or 
admittance) are most advantageous in microwave band-stop filter realization. Such 
networks are shown in Figure 5.42. Out of these four prototypes, the first two, (a) 
and (b), involving shunt series resonant circuits are suitable for transmission line 
implementation using shunt stubs. The other two, series parallel resonant circuits, 
are suitable for rectangular waveguide implementation of band-stop filters.

In the circuit shown in Figure 5.42(a), the input and output impedances are set 
to Z0. In case of a Butterworth or Chebyshev filter with N odd, the entire line of 
impedance inverters can be uniform, with 90° lines, all having impedances Z1 = Z0. 
For N even, 

	
0

1

0 1N

Z
Z

g g +

= 	 (5.63)

When the slope parameters determined by Figure 5.42(a) are either too small or 
too large to realize physically, they may be adjusted up or down, respectively, by 
controlling the impedances of the K-inverters. Formulas given in Figure 5.42(b) are 
general. It should be mentioned that if Zi are chosen unequal, then greater reflec-
tions result somewhere in the passband than would occur with an impedance level 
Zi = Z0. Figure 5.42(c) and (d) show the duals of the networks with series branches. 
Such duals are useful in waveguide band-stop filter realization. Figure 5.43 shows 
the schematic of a narrowband band-stop filter that can be realized using any form 
of planar transmission line or a coaxial line. The circuit is based on the network 
shown in Figure 5.42(a), where the inductors are realized using short-circuited 
stubs of length below 90° and the capacitors are realized using gap coupling of the 
stubs to the main line that realize the inverters. The equivalent circuit of the short-
circuited stub connection is shown in Figure 5.44. The figure also shows various 
other stub configurations for realization of narrow band band-stop filters. The 
required design equations can be derived in the following way:
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Let the electrical length of the stub at the center of the stopband be f0. There-
fore, at resonance

	 0
0

1
tanb

b

Z
C

f
ω

= 	 (5.64)

Since ϕ is linearly proportional to ω, using

Figure 5.42  Inverter-coupled band-stop filter prototypes.
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Figure 5.42  (continued)

Figure 5.43  Configuration of a capacitor stub-coupled narrowband band-stop filter. (From [6].) 
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d dω f

ω f
= 	 (5.65)

the reactance slope parameter is determined from 

Figure 5.44  Realization of resonant circuits using distributed elements. (a) and (c) are suitable for 
planar and coaxial lines, and (b) and (d) for waveguides.
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 
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where 

	 ( )f f f f= +2sec tanF 	 (5.67)

Out of the three unknowns, Zb, Cb, and f0, one is selected arbitrarily. In most cases 
it is Zb. The required slope parameter is determined from the equations in Figure 
5.42. The required electrical length f0 is obtained by numerically solving (5.67) 
and using the assumed value of Zb. Once Zb and f0 are known, Cb is obtained from 
(5.64). The above operations can be performed using WAVECON software very 
accurately. Table 5.4 shows the input/output files for the design of a 5.705-GHz 
stripline band-stop filter. See Figure 5.43 for definitions of geometrical parameters 
of the filter. The computed frequency response of the filter is shown in Figure 5.45.

For a given set of Yb and f0, the susceptance slope parameter of a near-π radian 
line is twice as great as the reactance slope parameter of a near-π /2 radian line. For 
the near-π radian line one should use [20] 

	
( ) 2sec tan

2
G

π
f f f f

 = + +   	 (5.68)

instead of F(f), which is used in near-π/2 radian line cases (cases (a) and (b) in Fig-
ure 5.44). It can be shown that 

Table 5.4  WAVECON Input/Output Files for Stripline Band-Stop Filter Design
Stripline Shunt Stub Narrowband Bandstop Filter  05/07/2006  01:49:16

5.7050 GHz Center Frequency 0.0060 GHz Bandwidth

0.0200 Db Ripple 5 Poles

0.1240 Inches Groundplane Spacing 2.2000 Dielectric Constant

0.0007 Inches Conductor Thickness

50.000 Ohms Input Line Impedance 0.1004 Inches Input Line Width

50.000 Ohms Output Line Impedance 0.1004 Inches Output Line Width

Sect 
Numb Element Value Z-Shnt Ohms

Z-Ser 
Ohms

Zshnt-L 
Inches

Zser-L 
Inches

Zshnt-W 
Inches

Zser-W 
Inches

Gap 
Inches Cap Pf

1 0.8471 74.418 0.3548 0.0500 0.0778 0.0089

50.034 0.3487 0.1003

2 1.3448 74.418 0.3564 0.0500 0.0807 0.0083

50.020 0.3487 0.1003

3 1.6748 74.418 0.3451 0.0500 0.0614 0.0140

50.020 0.3487 0.1003

4 1.3448 74.418 0.3562 0.0500 0.0802 0.0083

50.034 0.3487 0.1003

5 0.8471 74.418 0.3549 0.0500 0.0781 0.0089
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δ δ
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= + 	 (5.69)

where

	
2
π

δ f= − 	 (5.70)

which is the amount by which the stub length falls short of π/2 or π radians. For 
all practical purposes, the last term in (5.69) can be neglected compared to the first 
term. 

5.5.2  Determination of Fractional 3-dB Bandwidth of a Single Branch

The resonant electrical length f0 and the stub impedance Zb can be translated ac-
curately into physical dimensions when a planar transmission line like strip, mi-
crostrip, or coaxial line is used. However, determination of the capacitive gap for 
Cb or the inductive coupling Lb is a cumbersome job. Before the advent of modern 
CAD procedures, it was done using experimental means. Consequently, a consid-
erable amount of bench tuning of the overall band-stop filter was needed. Today 
the conventional experimental adjustment can be achieved using simulation tools. 
Each stub length and its capacitive or inductive coupling with the main line is ad-
justed using an analysis software so that the 3-dB bandwidth of the overall two-port 
network offers the same value as the stop bandwidth of the band-stop filter at the 
center frequency of the filter. While a particular stub is adjusted, all other stubs are 
either removed or detuned.

Figure 5.45  Computed frequency response of 5.705-GHz stripline band-stop filter. The above de-
sign can be perfected using a full-wave simulator. (From [5].)
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5.5.3  Effects of Dissipation Loss in Band-Stop Filters

There are three effects of dissipation loss or finite unloaded resonator Q on the 
frequency response of a band-stop filter [21]:

1.	 The peak attenuation inside the stop band is not infinite, but remains lim-
ited. Let us consider the equivalent circuit of a band-stop filter with finite 
unloaded Q of the resonators, as shown in Figure 5.46. Analyzing the cir-
cuit gives the minimum attenuation in the passband as [21]
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	 (5.71)

2.	 The reflection coefficient does not reach unity anywhere inside the stop-
band, resulting in an imperfect short circuit and loss of power on reflection. 
Lack of perfect short or open circuit in the passband due to the completely 
resistive nature of the circuit causes imperfect return loss in the passband.

3.	 There is additional loss in the passband of the filter. The additional loss in 
the passband, in the vicinity of ∆ω around ω0, is given by
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Figure 5.47 shows the effect of finite unloaded Q on the response of the strip-
line filter in Table 5.4.

The response shown in Figure 5.45 assumes an infinite unloaded Q. The re-
sponse shown in Figure 5.47 assumes finite dielectric loss and pure copper metal-
lization. Therefore, we conclude that the desired frequency response cannot be 
physically realized using a duroid-substrate stripline configuration.

Figure 5.46  Equivalent circuit of a band-stop filter with finite unloaded Q.
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5.5.4   Stub-Loaded Band-Stop Filter

Capacitive stub-loaded band-stop filters are well suited for narrow bandwidth fil-
ters or filters with a narrow stopband. Alternatively, when the bandwidth is mod-
erately narrow or wide, the direct stub-loaded band-stop filter configuration is 
preferable. The configuration of a direct stub-loaded transmission line band-stop 
filter is shown in Figure 5.48.

Table 5.5 shows the design parameters for stub-loaded band-stop filters. To use 
Table 5.5, the following parameters are relevant:

1.	 Left-hand terminating impedance ZA;
2.	 Low-pass prototype values gj(j = 0,1,2 …, N + 1); 
5.	 Center frequency ω0 of stop-band;
6.  The bandwidth parameter a.

Table 5.5  Exact Equations for Band-Stop Filter with λ/4 Spacings between Stubs
N = number of stubs.

ZA, ZB = terminating impedances.

Zj (j =1 to N)= Impedances of open-circuit shunt stubs.

Zj–1, j( j =2 to N) = connecting line impedances.

gj= Low-pass prototype element values.

Λ = 1aω′  where 1aω′ is the cutoff frequency of the low-pass prototype and a is the 
bandwidth parameter defined in (5.74). The terminating impedance ZA is arbitrary.

Figure 5.47  Band-stop filter response for finite conductivity.

Figure 5.48  Stub-loaded band-stop filter network.
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The bandwidth parameter a is given by
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 
=    	 (5.74)

where the frequency parameters ω0 and ω1 are defined in Figure 5.40. Figure 5.49 
shows the general layout of the filter [21].
Case N = 1
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Case N = 3

Z1, Z2, and Z12 are same as in case N = 2
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Case N = 4

Figure 5.49  Wide stopband shunt stub band-stop filter layout.
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The equations shown in Table 5.5 can be used in the design of a stripline, mi-
crostrip, or coaxial line band-stop filter. Figure 5.50 shows a typical WAVECON 
design file for a stripline band-stop filter. Table 5.6 shows the output file.

Figure 5.51 shows the stripline band-stop filter response and Figure 5.52 shows 
the layout of the filter.

Shunt stub-loaded bandstop filters cannot be realized easily using waveguide 
resonators. Consequently, the dual form of shunt-stub loading using series-stub 
loading shown in Figure 5.53 is used. If the bandwidth of the filter is very narrow, 
the impedances of the series stubs will become very low. Therefore, it is necessary 
to replace them with half-wavelength cavity resonators with coupling irises (see 
Figure 5.44(d)). However, in reality the distance between adjacent series stubs gives 
rise to undesired interactions and degrades the filter response. To circumvent this 

Figure 5.50  WAVECON input file for stripline band-stop filter design.



256	 ������������������������������Theory of Distributed Circuits

Figure 5.51  Stripline band-stop filter response. (From [22].)

Figure 5.52  Stripline band-stop filter layout. (From [22].)

Table 5.6  Wavecon Output File for Wideband Stripline Band-Stop Filter
Stripline Shunt Stub Wideband Band-Stop Filter

3.0000 GHz Center Frequency 2.7000 GHz Bandwidth

0.1000 dB Ripple 5 Poles

0.0640 Inches Groundplane Spacing 2.0000 Dielectric Constant

0.0014 Inches Conductor Thickness

50.000 Ohms Input Line Impedance 0.0531 Inches Input Line Width

50.000 Ohms Output Line Impedance 0.0531 Inches Output Line Width

Sect Numb
Element 
Value

Zshunt 
Ohms

Zseries 
Ohms

Lshunt 
Inches

Lseries 
Inches

Wdth-Shnt 
Inches  

Width-Ser 
Inches

1 1.1468 141.46 0.6941 0.0035

81.417 0.7387 0.0216

2 1.3712 28.437 0.7008 0.1158

96.844 0.8019 0.0140

3 1.9750 21.889 0.7391 0.1595

96.844 0.8019 0.0140

4 1.3712 28.437 0.7008 0.1158

81.417 0.7387 0.0216

5 1.1468 141.46 0.6941 0.0035
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problem, the distance between adjacent stubs is increased. The iris dimensions are 
so chosen to offer the required reactance slope parameters.

The first step toward waveguide band-stop filter design is frequency normal-
ization because a waveguide is a dispersive transmission line. The normalization is 
accomplished using reciprocal guide wavelength, λg0/λg. For a lumped element or 

Figure 5.54  Waveguide band-stop filter configurations: (a) E-plane stubs, and (b) H-plane stubs.

Figure 5.53  Series stub-loaded band-stop prototype.
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a transmission line filter supporting the TEM mode, the fractional bandwidth is 
given by

	 02

0 1

w
ωω

ω ω
= − 	 (5.75)

The corresponding equation for a waveguide band-stop filter is

	
0 1

2 0

g g

g g

w
λ λ

λ λ
= − 	 (5.76)

where λg0, λg1, and λg2 are the guide wavelength at the midstopband, lower cutoff, 
and upper cutoff frequencies, respectively, of the filter. Due to such scaling, the ac-
tual bandwidth of a waveguide filter will be (λg0 /λ0)2 times the bandwidth of a strip-
line filter that has been designed from the same prototype. As mentioned above, the 
iris coupled and approximately λg /2 stub-coupled waveguide band-stop filters have 
two configurations shown in Figure 5.54. Although the figure shows λg /4 spac-
ing between adjacent stubs, the distance between the stubs may be 3λg /4 for the 
reasons mentioned above. Each stub is slightly below half a wavelength long. The 
equivalent network of an E-stub-loaded filter is shown in Figure 5.42(c) and (d), 
while Figures 5.42(a) and (b) correspond to the H-stubloaded case. Another viable 
structure for a waveguide band-stop filter realization is shown in Figure 5.55. It 
consists of a ridged waveguide. The ridge height is approximately λg/4. 

5.5.4  Design Steps for Waveguide Band-Stop Filters

Let us consider the design of an E-plane stub resonator and iris-coupled waveguide 
band-stop filter, shown in Figure 5.54. The normalized susceptance B/Yb of each 
coupling iris can be determined from the analytical formula 

	
14

g

b

abB
Y M

λ

π

′
= −

′ 	 (5.77)

Figure 5.55  Ridged waveguide resonator elements for waveguide band-stop filter.
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where the magnetic polarizability of the slot iris is given by [23]
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	 (5.78)
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	 (5.79)

where a and b′ are the width and the height, respectively, of the stub-resonator-
forming waveguide. Equation (5.77) is valid for the iris cut in walls of infinitesimal 
thickness t and having a length l, and l is assumed to be much less than one-half free 
space wavelength. Equation (5.79) is based on measured data by Cohn [23] for zero 
wall thickness of the slot (see Figure 5.55) and equation (5.78) is the correction for 
the finite wall thickness [24].

Equation (5.79) can be inverted for synthesis of a band-stop filter as

	
3 2

1 1 1
3 3 335.693 21.793 0.622 0.0001

M M Mw
L L L L

     = − + + +          
	 (5.80)

5.5.4.1  Design Example of a Three-Resonator Waveguide Band-Stop Filter 

Assume that the filter has the following specifications:

1.	 Center frequency f0  = 10 GHz
2.	 Fractional stopband width ϖ = 0.05
3.	 Waveguide is WR90

The susceptance slope parameters for the two outer resonators are determined us-
ing the equations in Figure 5.42(c). We obtain
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0 0
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Y Y
= =

	 (5.81a)

	 2

0

18.232
b

Y
= 	 (5.81b)

We choose the characteristic admittance of the stub waveguides to be the same as 
that of the main waveguide. Therefore
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25.056

b
G G

Y
f f= = = 	 (5.82a)

	 ( )02 36.434G f = 	 (5.82b)

Using the relation [21]

	 ( ) ( ) 22 2 sec tanG Ff f f f f ≈ = +  	 (5.83)

we obtain

	 01 0390 90 159.5f f+ ° = + ° = ° 	 (5.84a)

	 02 90 163f + ° = ° 	 (5.84b)

The guided wavelength λg0 in a WR90 waveguide at 10 GHz is 1.5631 inches. 
Therefore, the stub lengths are
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In the next step, the magnetic polarizabilities of the slots are obtained from (5.77) 
as 

	 3
11 13 0.0167 inchM M= =′ ′ 	 (5.86a)

	 3
12 0.0137 inchM =′ 	 (5.86b)

From (5.78) we obtain
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Let us assume the wall thickness t = 0.5 mm and the slot length L = 10 mm. At 10 
GHz, λ = 30 mm. This gives
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	 1 10.6244k kM M= ′ 	 (5.88)

Combining (5.86) and (5.88) gives

	 3
11 13 0.0104 inchM M= = 	 (5.89a)

	 3
12 0.0086 inchM = 	 (5.89b)

Using (5.80) gives the slot widths as

	 1,3 0.2200 inchesW = 	 (5.90a)

	 2 0.1658 inchesW = 	 (5.90b)

and the design is complete. However, an analysis of the structure using the full-wave 
approach shows that the frequency response is considerably different from the de-
sired one, as shown in Figure 5.58. The difference is due to the fact that the above 
approximate design method ignores the phase contributions from the abrupt step 
junctions involved with the coupling slots in the main guide as well as in the guides 
forming the stubs. This problem can be solved either by using tuning screws or by 
rigorous analysis and optimization. Figure 5.59 shows the response of the filter 

Figure 5.56  E-plane iris-coupled stub-loaded band-stop filter.
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after computer optimization [25] using the above design dimensions as the starting 
guess. The optimized values are

	 1 3 0.7012 inchesL L= = 	 (5.91a)

	 2 0.7047 inchesL = 	 (5.91b)

	 1,3 0.223 inchesW = 	 (5.91c)

Figure 5.57  Graphical representation of (5.79).

Figure 5.58  Computed response of waveguide band-stop filter before optimization. Frequency is 
in gigahertz. (From [24].) 
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	 2 0.167 inchesW = 	 (5.91d)

Spacing between adjacent slots = 0.342 inches
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C H A P T E R  6 

Band-Pass Filters

6.1  Theory of Band-Pass Filters

Like any other electrical filter, a true band-pass filter is realized using lumped ele-
ments only. A distributed element band-pass filter exhibits periodic band-pass re-
sponse in the frequency domain. The basic building block of a band-pass filter is a 
combination of two coupled resonant networks, as shown in Figure 6.1. The center 
frequency of the filter is given by

	
0

1
2

L
f

Cπ
= 	 (6.1)

Adjustment of the input and output coupling capacitors C0 matches the filter to the 
external systems. The mutual coupling M between the resonators determines the 
bandwidth of the filter. However, from a fundamental point of view, the theory of 
band-pass filter design begins with the transformation of a suitable low-pass pro-
totype filter, which in turn begins with the corresponding frequency and impedance 
scalings as follows. Consider the low-pass filter prototypes shown in Figure 6.2(a) 
and (b). As we know from Chapter 4, the frequency response of the network has 
the form shown in Figure 6.2(c). For 1 1ω =′  and, g0 = gn+1 = 1 the network becomes 
a low-pass prototype with the frequency response shown in Figure 6.3. Using the 
frequency transformation [1] 

	 0 0

2 1 0

ω ωω
ω

ω ω ω ω

 
= −′  −   	 (6.2)

we obtain the band-pass filter prototype frequency response shown in Figure 6.4. 
The corresponding band-pass filter network is shown in Figure 6.5. The analytical 
relationship between ω and ω′ is given by
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and

	 0 1 2ω ω ω= 	 (6.4) 

The element values in the network in Figure 6.5 are given by

	 [ ] 12
0 1 2r rL C ω ω ω

−−= =′ ′ 	 (6.5)

	

2 1

r
r

g
L

ω ω
=′

−
	 (6.6)

Figure 6.1  Coupled resonators as the basic building blocks of a band-pass filter.

Figure 6.2  Low-pass filter and the frequency response.
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for series elements and

	 [ ] 12
0 1 2r rL C ω ω ω

−−= =′ ′ 	 (6.7)

	
2 1

r
r

g
C

ω ω
=′

−
	 (6.8)

Figure 6.3  Low-pass prototype and the frequency response.

Figure 6.4  Transformation of low-pass filter response to band-pass filter response. 
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for shunt elements (gr were defined in Chapter 4). Once all rL′  and rC ′  are obtained, 
impedance scaling described in Chapter 4 is applied in order to arrive at the final 
component values. A comparison of Figures 6.2 and 6.5 shows that the series induc-
tors of the low-pass filter have become series resonant circuits and the shunt capaci-
tors in the low-pass filter have become parallel resonant circuits in the band-pass 
filter. Let us consider an example showing the step-by-step procedure for band-pass 
filter design from the low-pass prototype. Figure 6.6(a) [2] shows the network of a 
third-order Chebyshev low-pass prototype that offers 26-dB return loss or -0.01-dB 
ripple in the passband. Being a low-pass prototype, it has 1Ω terminations at both 
ends and a 1-rad/sec cutoff frequency. Let us transform the network to a band-pass 
filter with a bandwidth of 0.0159 GHz/sec centered on 0.318 GHz/sec. Using (6.3) 
to (6.8) gives us the band-pass filter network shown in Figure 6.6(b). If we change 
the terminating impedances to 50Ω from 1Ω, the filter network in Figure 6.6c re-
sults, where each inductor value of Figure 6.6(b) has been multiplied by 50 and each 
capacitor value in Figure 6.6(b) has been divided by 50. The computed frequency 
response is shown in Figure 6.7. Table 6.1 shows the element transformation from 
low-pass form to band-pass form [3].

We mentioned in Chapter 4 that elliptic and extracted pole low-pass filters 
involve series resonant shunt elements and parallel resonant series elements. Trans-
formation of such elements in low-pass to band-pass mapping is done as shown in 
Table 6.2. For the series resonant network:
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and for a parallel resonant network

Figure 6.5  Band-pass filter transformation: (a) is for n-even, and (b) is for n-odd.
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where
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Figure 6.6  Evolution of a band-pass filter from low-pass prototype.
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Table 6.1  Low-Pass to Band-Pass Transformation
Low-Pass Band-Pass

Figure 6.7  Computed frequency response of band-pass filter shown in Figure 6.6 (analysis by 
Ansoft Designer).
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Figure 6.8 shows the network of a fifth-order extracted pole low-pass filter [2]. In 
the network the transmission zeros are produced by series resonances in the shunt 
arms. The cutoff frequency of the filter is at 0.478 GHz and the f∞ = 0.525 GHz. 
Figure 6.9 shows the computed frequency response of the filter.

Figure 6.10(a) [2] shows the network when it is transformed, using (6.9a) 
through (6.12b), into a band-pass filter centered at 0.478 GHz/sec and a ripple 
bandwidth of 0.0478 GHZ/sec. Figure 6.10(b) shows the computed frequency re-
sponse of the band-pass network for comparison. Figure 6.11 shows the element 
values when the the terminations are 50 Ω.

Like low-pass filters, band-pass filters can be realized using K- or J-inverters. In 
fact, use of inverters facilitates realization of distributed element band-pass filters. 
Figure 6.12 shows the transformation of a low-pass ladder into a band-pass filter, 
where ω0 is the center frequency in radians/sec and ∆ω is the bandwidth of the filter 
in radians/sec [4]. The inverter values are obtained from (4.140) to (4.150) depend-
ing on the desired frequency response.

The K-inverters in Figure 6.12 can be realized using the Π-network shown in 
Figure 6.13.

The negative shunt capacitances of the inverter are absorbed in the capaci-
tances of the adjoining resonant networks. This eventually leads to the form of the 
filter network shown in Figure 6.14. The element values are given by [5]

Table 6.2  Low-Pass to Band-Pass Transformation
Low-Pass Band-Pass
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Figure 6.8  Extracted pole low-pass filter (cutoff is at 0.478 GHz/sec and f∞ = 0.525 GHz).

Figure 6.9  Extracted pole low-pass filter response (cutoff is at 0.478 GHz/sec and ω∞=0.525 GHz/
sec). (From [2].) 
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Figure 6.10   (a) Network of extracted pole band-pass filter centered at 0.478 GHz and 0.0478 GHz 
bandwidth.
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Figure 6.11  Final design with 50Ω terminations.

Figure 6.12  K-inverter-coupled band-pass prototype.

Figure 6.13  Narrowband lumped element inverter using a capacitive Π-network

Figure 6.14  Capacitively coupled LE band-pass filter.
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	 oω
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ω
=

∆
	 (6.13f)

As the frequency rises above the upper cutoff frequency, all series capacitors offer 
less and less reactance and eventually become a series short circuit between the load 
and the generator. At the same time, all shunt inductors become an open circuit, 
and due to the shunt capacitors, we get a single shunt capacitor at a very high fre-
quency. This results in 2N–1 transmission zeros at dc and a single transmission zero 
at infinite frequency. Consequently, the response is more selective below the lower 
cutoff than the upper cutoff. Following the same line of argument we find that in-
ductive couplings instead of capacitive couplings can reverse the asymmetry. Use of 
alternate capacitive and inductive couplings will result in a symmetrical response.

6.2  Distributed Transmission Line Form of Capacitively Coupled Band-
Pass Filter

6.2.1  Gap-Coupled Transmission Line Band-Pass Filters

Following the basic transmission line theory we see that a section of transmission 
line of length equal to a multiple of half wavelengths has the equivalent circuit of 
a shunt-parallel-resonant circuit, as shown in Figure 6.15. Figure 6.16 shows the 
equivalent circuit of a series gap in a transmission line. Therefore, one can realize 
the distributed line equivalent of a capacitive Π-network using a series gap discon-
tinuity in a transmission line [6].

We can, therefore, use a series gap discontinuity as the impedance inverter 
and a half-wavelength-long section of transmission line as the shunt resonator in 
a capacitively coupled band-pass filter. The configuration of such a filter is shown 
in Figure 6.17 [7].

The transmission line can be the center conductor of a coaxial line, stripline, 
microstrip line, or suspended microstrip line. The design equations are as follows 
[8]:
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= 	 (6.14a)

Figure 6.15  Equivalent circuit of a half-wavelength transmission line.
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where the prototype cutoff frequency 1ω′ has been defined in Figure 6.2. Once the 
K-inverter values have been obtained from the above equations, the gaps between 
adjacent resonators are adjusted so that the scattering parameters of a gap are re-
lated to the corresponding K-inverter as 

	 1tan tan
2 sK x
f − = +   	 (6.15a)

	 ( )1 1««« p s sx x xf − −= − + − 	 (6.15b)

Figure 6.16  Equivalent circuit of a series gap discontinuity of a transmission line.

Figure 6.17  Layout of a gap-coupled band-pass filter.
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The edge-to-edge line length lj of the jth resonator of the filter is given by [8]
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	 (6.15e)

The scattering matrix of the K-inverter forming a gap between resonators can 
be determined from the equivalent network of the gap (see Chapter 3 for certain 
transmission lines like striplines or coaxial lines). Otherwise, for any other form 
of transmission line it can be obtained using an electromagnetic simulator. In a 
simulator-based approach, the gap is analyzed using an electromagnetic simula-
tor and the two-port scattering matrix, with the reference planes at the strip edges 
forming the gap, obtained at the center frequency of the filter. Once the S-matrix 
is known, (6.15a) through (6.15d) are used to calculate the values of the K-invert-
ers. The above procedure has been programmed in a commercial software called 
WAVECON [7]. WAVECON synthesis and analysis results for a 14-GHz stripline 
gap-coupled band-pass filter are shown below. Figure 6.18(a) shows the input file, 
Figure 6.18(b) shows the filter dimensions, and Figure 6.18(c) shows the computed 
response. The substrate is Rogers RT-Duroid 5880. The main disadvantage of a 
half-wave gap-coupled filter is the appearance of spurious passband at twice the 
center frequency of the filter. As well, the filter is very long in size. In addition to 
that, the gaps become too small to be fabricated in the case of wideband filters. The 
last problem is often solved for planar filters using broadside coupling or interdigi-
tal or multilayer capacitor coupling leading to a more complicated structure. 

6.2.2  Edge Parallel-Coupled Band-Pass Filters

A more compact form of a band-pass filter is a half-wave resonator quarter-wave 
coupled band-pass filter. Let us consider the equivalent network of an edge parallel-
coupled transmission lines of length θ and the even- and the odd-mode impedances 
Zoe and Zoo, respectively, as shown in Figure 6.19.

Cascading several such edge parallel-coupled sections of length θ = 90° in tan-
dem leads to a band-pass filter. Figure 6.20 shows the layout of the filter and the 
equivalent network.

For the first coupled pair of lines [9]:
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For the intermediate coupled pair of lines:
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Figure 6.18  (a) WAVECON input file for stripline gap-coupled filter. (From [7].) (b) Stripline gap-coupled 
filter dimensions and layout. (From [7].) (c) Computed frequency response of stripline gap-coupled band-pass 
filter.
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and for the outermost coupled pair of lines:
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Once the reciprocals of the normalized K-inverter values are known from the equa-
tions, the even- and odd-mode characteristic impedances of the corresponding cou-
pled pair of lines are obtained from
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where k = 0 to N.

Figure 6.18  (continued)

Figure 6.19  Edge parallel-coupled transmission lines and the equivalent K-inverter.
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In Figure 6.20 the length of each coupled section is λ/4. However, each open 
end of a line is shortened by an amount dk to account for the fringing fields at the 
open ends. For a stripline filter, the foreshortening is given by (3.85) in Chapter 3. 
For any other transmission line the open-end correction is best done by using an 
electromagnetic simulator. Knowing the even- and odd-mode impedances of a cou-
pled pair of lines, the corresponding line width and separation are obtained by us-
ing a suitable synthesis scheme or equation. For example, in the case of a stripline, 
(3.123) and (3.124) in Chapter 3 are used. WAVECON [7] synthesis and analysis 
results for a 10-GHz stripline edge parallel-coupled band-pass filter are shown be-
low. Figure 6.21(a) shows the input file, Figure 6.21(b) shows the filter dimensions, 
Figure 6.21(c) shows the layout, and Figure 6.21(d) shows the computed response. 
The substrate is Rogers RT-Duroid 5880.

Planar edge parallel-coupled filters are usually enclosed within a box-type en-
closure, of which the lateral dimensions are kept as small as possible so that no 
waveguide mode propagates through the structure up to the highest frequency of 
operation of the filter. That is, if the desired highest frequency of operation is fH, 
then the width D of the enclosure is kept less than ( )/ 2 H rc f ε , where c is the velocity 
of electromagnetic wave in free space and er is the dielectric constant of the medium 
filling the space between the strips and the ground planes. In order to achieve this 
objective, the layout is tilted at an angle to keep D as small as possible, as shown 
in Figure 6.22. If waveguide modes of the enclosure of an edge parallel-coupled 
band-pass filter are properly suppressed, the first spurious pass band of the filter 

Figure 6.20  Edge parallel-coupled band-pass filter and the equivalent network.
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appears centered at twice the frequency of the fundamental passband. There are 
several methods for suppressing the spurious passband. One very popular method 
is using a stepped impedance resonator, as shown in Figure 6.23. The resonance 
condition is given by [10]

	 0

1tan Kθ −= 	 (6.17c)

The first spurious passband of the filter occurs around

Figure 6.21  (a) Parfile input file for edge parallel-coupled stripline band-pass filter, (b) Parfile out-
put file for edge parallel-coupled stripline band-pass filter, (c) edge parallel-coupled stripline band-
pass filter layout, and (d) computed frequency response of edge parallel-coupled stripline band-pass 
filter. (From [7].)
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Figure 6.21  (continued)

Figure 6.22  Edge parallel-coupled band-pass filter within an enclosure.
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The design equations are 
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Figure 6.23  Stepped impedance edge-coupled resonator filter layout.
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6.2.3  Hairpin-Line Filter 

A major drawback of half-wave edge parallel-coupled band-pass filter is its size. A 
compact form of the filter is the hairpin-line filter shown in Figure 6.24 [11]. This 
is a folded form of the edge parallel-coupled filter shown in Figure 6.21(c).

When each inner resonator of the filter in Figure 6.20(b) is folded in the form 
of a hairpin, a hairpin-line filter results. Obviously, the compactness of such a 
structure depends on the spacing between the two arms of a hairpin-line resonator. 
Smaller spacing results in more undesired coupling between the two arms of a reso-
nator and less desired coupling between adjacent resonators. Hence, the self- or 
undesired coupling in each resonator becomes an important factor in filter design. 
Since the self-coupling in each resonator is an arbitrary factor that depends on the 
value of the spacing chosen by the designer, the design begins with a bandwidth 
correction factor given by [11]

	
1

d
c

f
f

∆
∆ =

− Λ
	 (6.18a)

	
3 2

0.001 0.0012 0.0735 0.7284CP CP CPΛ = + − + 	 (6.18b)

where CP is the coupling between the arms of a single hairpin resonator in decibels 
(dB), ∆fc is the corrected bandwidth, and ∆fd is the desired bandwidth of the filter. 
Figure 6.24 defines the parameters for a hairpin-line filter [11] and design equations 
are presented below.

Figure 6.24  Hairpin-line filter.
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 6.2.3.1  Design Equations for Hairpin-Line

N	 Order of low-pass prototype filter

gi	 Low-pass prototype filter element values (i = 0,1,2, ..., N+1)
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where

v is the velocity of light in the medium

lij are the self or mutual inductance per unit length of the ith and jth conductors

ZA is the source and load impedance

The normalized capacitance matrix of the parallel-coupled conductors is given 
by

	 [ ] [ ] 1
C L

−= 	

where

	
1

ij A
ij

c Z
C

v−= 	

cij are the self- or mutual capacitance per unit length of the ith and jth conductors.
Knowing the self- and the mutual capacitances of each conductor, the cor-

responding widths and spacings between the conductors are obtained by using 
a synthesis routine based on (3.102) to (3.117). Figure 6.25(a) shows a typical 
WAVECON [7] input file for a hairpin-line filter design. Figure 6.25(b) shows the 
output file and the filter layout. The computed frequency response is shown in 
Figure 6.25(c).

The input and output connections to a hairpin-line filter or an edge parallel-
coupled filter are realized by capacitive coupling between the two outermost reso-
nators and open-ended straight transmission lines. A major drawback of such a 
technique is that the coupling gap becomes unrealistically small when the band-
width of the filter is large. This obstacle is removed by eliminating the input- and 
output-coupled lines and directly tapping the two outermost resonators, as shown 
in Figure 6.26. The location of the tapping point on the resonators is given by [12]
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Z Q
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π
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	 (6.19a)

where Z0 is the system impedance (usually equal to 50Ω), Zr is the resonator imped-
ance and Qe, the external quality factor, is given by
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Figure 6.25   (a) WAVECON input file for a 4.35-GHz hairpin-line filter, (b) output file and the layout 
for a hairpin-line filter, and (c) computed frequency response of a hairpin-line filter, (From [7].)
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Figure 6.25  (continued)

Figure 6.26   (a) Tapped hairpin-line filter, and (b) tapped edge parallel-coupled filter.
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In the case of coupled resonators in a homogeneous medium, the guide wavelength 
is given by

	
0

g

r

c

f
λ

ε
= 	 (6.20)

where c is the velocity of light in free space and εr is the dielectric constant of the 
medium. However, in the case of coupled resonators embedded in an inhomoge-
neous medium, the guide wavelength is given by
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= 	 (6.21a)

where εeffr is the Dell-Imagine [13] weighted average of effective dielectric constant 
of the coupled transmission line. It is given by
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It is obvious from the above equation that different resonators will have different 
lengths in an edge parallel-coupled and a hairpin-line filter because the even- and 
odd-mode parameters will be different for different coupled sections based on the 
coupling values. That is not a severe problem for narrow and moderate bandwidth 
filters. However, for wideband filters, a considerable amount of postproduction 
tuning is needed to achieve the desired center frequency and passband return loss. 
In addition to that, tapped line filters often show degraded passband return loss 
due to the parasitic discontinuity effect of the T-junctions. Equation (6.19) assumes 
a perfect T-junction with zero parasitic effect. In reality, however, the effect of the 
T-junction discontinuity off-tunes the two outermost resonators and the filter be-
comes nonsynchronous. Fortunately, the modern simulator-based approach allevi-
ates these design problems considerably and in most cases a first-pass success is 
guaranteed. The approach will be discussed in Section 6.2.6.

6.2.4  Interdigital Filters 

An interdigital filter [14] is a very popular device in microwave systems. It offers a 
very good compromise between size and resonator Q-factor. In fact, it is a modi-
fied form of a hairpin-line filter. Assume that an infinite coupling exists between 
the arms of a hairpin-line resonator. As a result, the gap between the arms becomes 
zero. Also, since the entire length of the hairpin is equal to one half of a wavelength, 
a virtual short circuit exists at the middle of the resonator. Figure 6.27(a) shows 
how, in the limit, a hairpin-line resonator degenerates into a single quarter-wave-
length resonator with one end grounded. As a result, a hairpin-line filter becomes 
what is known as an interdigital filter, which is shown in Figure 6.27(b). The cor-
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Figure 6.27  (a) Degeneration of a hairpin-line resonator to a quarter-wavelength resonator, (b) ca-
pacitively coupled and tapped line interdigital filters, and (c) mechanical assembly of an interdigital 
filter. (Reprinted with permission from Stellenbosch University, SA, courtesy of Prof. Petrie Meyer and 
Ms. Susan Maas.)
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responding equivalent circuits are shown in Figure 6.28 [15]. Figure 6.27(c) shows 
the mechanical assembly of a typical interdigital filter.

The above interdigital filter configurations are the traditional forms used from 
the invention of interdigital filter in 1960s to the end of the 1990s. Design equa-
tions for such forms are available in [16]. In the modern approach, most inter-
digital filters are realized with all resonators having nearly equal impedances. This 
approach leads to simpler design equations and easy realizability, especially when 
round rods are used. Also, in most cases tapped resonators are used because the 
tap-point location can be adjusted with relative ease during postproduction tuning. 
The equations, from Caspi and Adelman [17], are as follows:

	

0

1

, 1

1 1 1

, 1 , 1 1 1

1 12
1

1 1 1

2, 1

, 1
, 1

2
12

1
1

2
1

0 0 1

0

3

2 2

0 2
0

1
2 2

tan

sin

sin
sin

1
2

cos sin

cos sin1

i i

i i i N

i i i i i N

N

i i
i

i N

i i
i i

T

T

T T
T

T
T

f
f

Y
Y

Y
J

g g

Y J

Y Y
C C

v
Y Y Y

C
v

Y
C

v
Y

Y Y
Y

Y
Y g g

f
f

C

Y
Y

π
θ

θ

θ

θ

θ

θ θ

θ
ω

+
+ = −

+ + = −

− +

= −

+
+

−

 ∆
= −  

=

=

=

−
= =

− −
=

=

= −

 
 
 

= ∆−

=
/ +







2
T

TY
θ

































 
   

	 (6.22)

In the above equations θT is the electrical angle of the tap-point location on the out-
ermost resonators from the ground, v is velocity of light in medium F propagation 
(1.18 × 1010/ εr  inches/second). The physical location of the tap point is given by
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where c is the velocity of light in free space, v is the velocity of light in the filter cav-
ity, and εeffr is the effective dielectric constant of the medium. For a homogeneous 
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medium such as a stripline or slabline, it is the dielectric constant of the space com-
pletely filling the entire filter. For an inhomogeneous medium such as a microstrip 
or suspended microstrip, the designer should use the Dell-Imagine equation [13] 
(see (6.21b)). Due to the loading effect of the tapping, the resonant frequency of the 
two outermost resonators changes from f0, so the resonators are tuned back to f0 
by adding compensating capacitors of value CT at the open ends. Once the self- and 
mutual capacitances per unit length of each resonator are obtained from the above 
equations, the width of each resonator and the spacings between them are obtained 
by using the synthesis and analysis equations in Chapter 3. Figure 6.29 shows the 
WAVECON [7] input file, output file, and the computed frequency response of a 
slabline interdigital filter.

6.2.5  Capacitively Loaded Interdigital Filters

The advantage of a capacitively loaded interdigital filter, shown in Figure 6.30, is 
that the resonators in it can be shorter than a quarter wavelength, leading to a more 
compact filter. However, the compactness is achieved at the cost of lower unloaded 
resonator Q-factor and hence resulting in higher passband insertion loss and band-
edge rounding in the frequency response.

A viable approach for designing the capacitively loaded interdigital filter is as 
follows. Use (6.22) for 90° long resonators and obtain an initial set of values for 
line widths and spacings. Then, if a resonator electrical length of θ0 is assumed, the 

Figure 6.28  (a) Equivalent circuit of a capacitively coupled interdigital filter (Figure 6.27(a)), and 
(b) equivalent circuit of a tapped interdigital filter (Figure 6.27(b)). (From [15].)
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loading capacitance connected between the ground and the open end of a resonator 
is given by 

	 0
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f Z
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π=
=



	 (6.24)

Figure 6.29  (a) WAVECON input file for a slabline interdigital filter, and (b) WAVECON output file 
corresponding to the input file in Figure 6.29(a). (From [7].) (c) Computed frequency response of 
slabline interdigital filter.
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Figure 6.29  (continued)

Figure 6.30  Capacitively loaded interdigital filter and the equivalent circuit. All line lengths not 
shown are equal to L.
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where Zr, the resonator impedance, is assumed to be the same for all resonators. 
Use a repeated-analysis-based computer optimization routine to obtain the desired 
frequency response. The optimization parameters are the line widths, line spacings, 
loading capacitances, and the tap-point location. The analysis routine may be based 
on transmission line and lumped element theory or full electromagnetic modeling. 
The latter is the most realistic and effective one for several reasons. One main rea-
son is the physical form of the loading capacitance. Figure 6.31 shows several such 
forms used in practice.

Although reasonably accurate analytical models exist for the forms of capaci-
tors shown in Figure 6.31, the best way to design capacitively loaded interdigital 
filters involving such forms is 3-D electromagnetic simulation. The design approach 
is based on interresonator couplings. It is worthwhile to explain the theory behind 
the interresonator-coupling-based approach of filter design. 

6.2.6  Band-Pass Filter Design Based on Coupling Matrix

Consider the generalized network of the multiple-coupled resonator filter shown in 
Figure 6.32 [18].

The corresponding network equation is 

	 [ ] [ ][ ]e Z i= 	 (6.25a)

In expanded form

Figure 6.31  Physically realized forms of capacitance at the end of a resonator.
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	 (6.25b)

where
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	 (6.26a)

	 0

1
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ω = 	 (6.26b)

The impedance matrix of the network is expressed as

	 [ ] [ ] [ ]( )RZ S I M= + 	 (6.27)

where I is the identity matrix of order N, [S] is a matrix with all elements zero ex-
cept elements (1,1), and (N,N). 

	 [ ] [ ] [ ]RM R j M= + 	 (6.28)

The scattering parameters of the filter are given by

Figure 6.32  Generalized network of a multiple-coupled resonator filter.
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where the normalized external quality factors qe1 and qeN are defined by
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The coupling coefficient kM between the ith and the jth resonators is the ratio of the 
mutual inductance Mij between them and the self-inductance L

	 ij
M

M
k

L
= 	 (6.30)

From the above analysis, the design of a synchronously tuned band-pass filter de-
pends on the determination of the parameters Mij, L, C, and the external Q-factors 
Qe1, QeN. Keep in mind that for a physically symmetric band-pass filter, the de-
signer needs to determine only half the coupling parameters. The design procedure 
can be described with the help of an example. The example filter is a special type of 
microstrip filter having the following specifications:

1.	 Ripple bandwidth ∆f = 0.160 GHz
2.	 Center frequency f0 = 2.20 GHz
3.	 Passband return loss RL = –26 dB
4.	 Filter order N = 4
5.	 Transmission line = microstrip
6.	 Substrate thickness = 50 mils
7.	 Substrate dielectric constant εr = 10.5
8.	 Resonator impedance Zr = 50 ohms
9.	 System impedance 50 ohms
10.	Special requirement: All resonators should be grounded on the same side. 

The basic filter configuration is shown in Figure 6.33.
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6.2.6.1  Determination of Resonator Spacings

From the specifications it is obvious that it is not a conventional interdigital filter 
where alternate resonators are grounded on the same side. As a first step toward the 
design we construct a coupled pair of microstrip resonators grounded on the same 
side using via holes. The via hole configurations are the same as the ones we intend 
to use in the actual physical realization of the filter. The structure is shown [19] in 
Figure 6.34(a) and the frequency response of the structure, obtained experimentally 
or by a simulator, is shown in Figure 6.34(b). The resonator widths are chosen so 
as to offer the desired Zr and the length L is chosen so that together with the effects 
of the open end and the via hole, the resonators resonate at the center frequency f0 
of the filter. Due to the coupling between the resonators we see two resonant peaks, 
one below f0 at f1 and the other above f0 at f2. The coupling coefficient between the 
resonators is given by [20]

	
2 2

2 1
2 2

2 1
m

f f
k

f f

−
=

+
	 (6.31)

The magnitude of km is a function of the separation S between the resonators. 
Therefore, by simulating the structure for different S we can obtain km as a function 
of S, as shown in Figure 6.35. An analytical equation for interresonator spacing S as 
function of coupling km can be obtained by using a suitable curve-fitting software. 

For the filter to be designed, we find that the required low-pass prototype has 
the parameters

Figure 6.33  Microstrip interdigital filter.
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Figure 6.34   (a) Arrangements of coupled pair of resonators in coupling simulation, and (b) fre-
quency response of circuit arrangement shown in Figure 6.34(a).
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It can be shown that the corresponding coupling coefficients are
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= = = 	 (6.33)
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Using the procedure described above, the corresponding resonator spacings are 
obtained as

S12 = 50 mils

S23 = 84 mils

6.2.6.2  Determination of Tap-Point Locations

The tap-point locations depend on the external quality factors Qe1 and Qe4. For the 
required values, these parameters can be shown to be

	 1 0
14 1 9.80e e

g f
Q Q

f
≈ = =

∆
	 (6.35)

We construct a microstrip configuration shown in Figure 6.36(a) where a resona-
tor is attached to a 50-ohm finite length tapping line on one side and a very loosely 
coupled tapping line on the other side. The tapping line is connected to a generator 
with 50-ohm output impedance and the loosely coupled line is connected to a 50-
ohm detector. The network is swept around the center frequency of the filter. Figure 
6.36(b) shows the frequency response of the filter.

From Figure 6.36(b) the external Q-factor is obtained as

	 0

3
e

dB

f
Q

f
=

∆
	 (6.36)

Figure 6.35  Coupling as a function of resonator spacing.
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where ∆f3dB is the –3 dB bandwidth of the response curve in Figure 3.36(b). The 
tap-point location l is varied and for each location the structure is analyzed. Cor-
responding loaded Q, Qe, is calculated using (6.36) and recorded. The required tap-
point location l is obtained when Qe equals Qe1. For the present filter we obtained 

Figure 6.36   (a) Microstrip structure for external Q determination, and (b) frequency response 
network shown in Figure 6.36(a).
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l = 125 mils. The final layout of the designed filter is shown in Figure 6.37. The 
computed frequency response of the filter, based on full EM-wave analysis using 
EM3DS [19] software, is shown in Figure 6.38.

Having successfully finished the design using a generalized simulator-based 
method, we can arrive at a few conclusions. Those are:

1.	 The method is general and it uses the most realistic form of the coupling 
mechanism, grounding structure, vias, and the parasitics due to tap-point 
tee-junction discontinuity and the open ends.

2.	 Irrespective of the type and shape of the cavity and transmission line, the 
method is the same for all types of band-pass filters (e.g., waveguide, co-
axial line, dielectric resonators, and planar transmission lines).

Figure 6.37  Final layout of microstrip interdigital filter. All dimensions are in mils.

Figure 6.38  Computed frequency response of microstrip interdigital filter.
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3.	 Accuracy of the method depends on how exactly the structure is repre-
sented in the simulations and the accuracy of the simulator used.

In a nutshell, the simulator-based method is based on Dishal’s method [21] of band-
pass filter design using virtual reality. The biggest advantage of the method is that 
no hardware is necessary to realize the design goal, which is cost effective.

6.2.7  Coaxial Cavity Band-Pass Filter Design

Figure 6.39 shows structures needed in designing an iris coupled coaxial cavity filter 
using the simulator-based method. Such structures can be created and analyzed us-
ing a standard 3-D EM simulator.

6.2.8  Combline Filters 

A combline filter [22] is a very popular component used in microwave systems. It 
is compact in size and offers very wide stopband width depending on the length of 
the coupled transmission lines used. However, the advantages of a combline filter 
are obtained at the cost of increased passband insertion loss. A capacitively loaded 
interdigital filter and a combline filter have almost identical properties. But unlike 
in an interdigital filter, all transmission lines are grounded on the same side, as 
shown in Figure 6.40, which is convenient from a manufacturing standpoint. Fig-
ure 6.41(a) shows the practical schematic and Figure 6.41(b) shows 3-D view of a 
fourth-order combline filter with top cover removed.

6.2.8.1  Design Equations for a Combline Filter [17]

Choose:
N		  Order of the filter (number of resonators)

gi		  Low-pass prototype filter element values i = 0 to N+1

0

f
f

ϖ
∆

= 	 Fractional bandwidth of the filter

YA		  Source and load admittances

Yr		  Resonator admittance (same for all resonators)

θ0		  Electrical length of the resonators at center frequency f0

Compute:

	

( ){ }

0
02

0

, 1 1 1
1

, 1 , 1 01, 1

1
0 0 0 0 1

cot2 sin

tan

sin cos sin / 2
2

r

i i i N
i i

i i i ii N

g
r r

Yb

b
J

g g

y J

l Y g g Y

θ
θ

θ

ϖ

θ

λ
ϖ θ θ θ

π

+ = −
+

+ += −

−

  = +      


= 

= 

= + 





	 (6.37)

Per unit length capacitances 
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Figure 6.39   (a) Structure for coupling simulation in iris-coupled coaxial cavity filter (created by EmpireTM), 
(b) structure for external Q simulation of iris-coupled coaxial cavity filter (created by EmpireTM), and (c) iris-
coupled coaxial cavity filter, final form (created by EmpireTM).
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The terminating capacitors are
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Compensating capacitance for tapping on the outermost resonators l and N
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Therefore, the total capacitance on resonators 1 and N is

Figure 6.39  (continued)
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	 1 1
Total S

c SC C C= + 	 (6.41)

The above equations are derived on the basis of lumped element circuit theory, 
transmission line theory, and assumption of ideal grounding of resonators. In real-
ity, such assumptions are not completely valid due to via inductance, proximity of 
the enclosure walls, and particularly the way the capacitances are realized. Conse-
quently, the dimensions obtained by using the above design equations need to be 
refined using full EM simulation or actual postproduction tuning of the filter. In 
fact, the addition of the compensating capacitance s

cC  amounts to a few extra turns 
of the tuning screw in postproduction tuning. Besides frequency tuning, it may be 
necessary to adjust the interresonator coupling as well. Figure 6.41(c) shows how a 
set of N–1 screws is inserted between the resonators to achieve this goal.

As mentioned above, the combline filter is compact in size and offers a wide 
stopband. In an interdigital filter the first spurious passband occurs at 3 f0 with a 
3∆f wide passband. For a combline filter the first spurious passband is centered 
around 

Figure 6.40   Combline filter schematic and the equivalent network of a combline filter.
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Figure 6.41   (a) Practical schematic and (b) 3-D view of a 3-pole combline filter assembly. Re-
printed with permission from Stellenbosch University, SA; courtesy of Prof. Petrie Meyer and Ms. 
Susan Maas.) (c) Combline filter with tuning screws.
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Also, shorter than a quarter-wavelength resonator has a lower unloaded Q-factor. 
If the quarter-wavelength resonator has an unloaded Q of Qλ/4, and a resonator of 
electrical length θ0 has the unloaded 

0
Qθ , then 

	 ( )0

2
0

4
sinQ Qθ λ θ= 	 (6.43a)

However, the overall QTotal of the resonator is a combination of the resonator 
Q(

0
Q

θ
) and the Q-factor Qc of the lumped capacitor forming the resonator. It is 

given by

	
0

1 1 1

Total cQ Q Qθ

= + 	 (6.43b)

6.2.8.2  Combline Filter Design Example

We have a set of customer specifications for a square-rod combline filter as follows:

1.	  Passband: 7.40–8.1 GHz (ripple bandwidth ∆fr = 700 MHz)
2.	 Insertion loss: 1.00 dB maximum at band edges
3.	 Rejection (IL): –10 dB at 7.2 and 8.3 GHz 

(Isolation bandwidth ∆fi = 1100 MHz)
4.	 Passband return Loss (RL): –15.00 dB
5.	 Operating temperature: –30°C to +70°C
6.	 Approximate inner dimensions: 1.2” × 0.25” × 0.25”

A good approximation for the initial dimensions of the rods and the spacings be-
tween consecutive rods can be obtained from (6.37) to (6.41). However, before 
proceeding with the initial design, we should analyze the temperature stability of 
the filter, which will in turn determine the required order N of the filter. The overall 
temperature range of the filter is 100°C. The coefficient of linear thermal expansion 
of brass is αl = 0.000019 length/unit length/°C. Therefore, the shift in the center 
frequency of the filter due to temperature change is ∆fsT = αl∆Tf0 ≈ 15 MHz. Conse-
quently, we need to expand the ripple bandwidth (∆fr = 700 MHz) by 15 MHz and 
reduce the isolation bandwidth (∆fi = 1100 MHz) by the same amount (15 MHz) 
for temperature stability. The new values for those parameters are 715 MHznew

rf∆ =  
and 1085 MHznew

if∆ = . We design the filter for a 20-dB return loss instead of a 15 
dB return loss. The stop-band to pass-band ratio

	 1.5175.
new

i
new

r

f
f

g ∆= =∆
	

And, assuming a Chebyshev response, the required filter order
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	 ( ) ( )26 20log 1 4.238N IL RL g g≥ + + + − = 	

Hence, the required order is N = 5. According to (6.42), a sixty-degree resonator 
length will ensure a spurious free stopband up to and beyond 22 GHz. Also, a cir-
cuit simulation shows that the required unloaded resonator Q-factor for less than 
1 dB insertion loss at the band edges should be more than 600. The correspond-
ing quarter-wavelength resonator Q is obtained from (6.43) is 800. Using (3.66) 
and a 66 Ω stripline (84 mils × 84 mils square rod between 240 mils ground-plane 
spacing), we find an unloaded Q-factor of 2609. Considering only 65% of that un-
loaded Q we have an available Q of 1696, which is more than twice the required Q. 
Figure 6.41(a) shows the dimensions of the filter as obtained from (6.37) to (6.42a) 
via WAVECON software.

The analyzed frequency response of the filter is shown in Figure 6.42(b). 
However, the analysis assumes that the resonators are terminated by lumped ca-
pacitors. From Figure 6.42(a), we notice that the resonator rods do not have the 
same width. For the sake of manufacturing convenience, we use an average value 
of 84 mils. The open end of each rod and the opposite wall form the terminat-
ing capacitance. The value of that capacitance, in case of round rods, is shown in 
Figure 6.42(c).

For a square rod of dimension 84 mils × 84 mils and a required terminating 
capacitance of 0.150 pf, d ≈ 10 mils. Using the computed values of d and the di-
mensions of the filter in the table, we now analyze and optimize the response of 
the filter using a full 3-D EM simulator. The optimized dimensions are shown in 
Figure 6.42(d).

Figure 6A.1 in Appendix 6A shows a very commonly used slot-coupled coaxial-
resonator-based combline filter configuration and the associated design equations.

Usually in all cases of combline filter design, when the normalized ground 
plane separation b/λ becomes more than 0.12, two effects become more and more 
prominent: (1) the measured bandwidth becomes more than the bandwidth the 
filter is designed for, and (2) the resonators exhibit larger Q-factors than what is 
expected from a combline resonator.

When b/λ becomes larger and larger, the supported mode in the structure grad-
ually transitions from pure TEM to a ridged waveguide mode and the filter be-
comes a ridged waveguide filter. In general, the Q-factor of a combline resonator 
is given by1.

	 Q Kb f= 	 (6.43c)

where the constant K = 1600, b is in inches and f in gigahertz. Figure 6.42(e) shows 
the increase in Q as a function of b f . The expansion in bandwidth, however, 
depends on the specific combline resonator configuration. Therefore, it is wise to 
design such filters, which Levy, Yao and Zaki2 called transitional combline/eva-

1.	 See Chapter 5, reference [24].
2.	 Ralph Levy, Hui-Wen Yao and Kawthar Zaki, “Transitional Combline/Evanescent-Mode Microwave Fil-

ters”, IEEE Trans. On MTT. Vol. 45, No. 12, December 1997.
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nescent mode filters, using the full-wave simulators and optimization described in 
Section 6.2.6. 

6.2.9  Waveguide Band-Pass Filter Design

Most waveguide band-pass filters consist of a series of half-wavelength-long cavi-
ties coupled by inverters formed by waveguide discontinuities. A few such typical 
discontinuities are shown in Figure 6.43.

Figure 6.42   (a) Dimensions of the designed combline filter obtained from WAVECON software [7]. (b) 
computed frequency response of combline filter. (c) Terminating capacitance of a combline filter. (d) opti-
mized dimensions of combline filter. Dimensions are in mils. (e) measured variation of experimental Q with 
b/λ (Courtesy of Dr. Ralph Levy).
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Irrespective of the type of the discontinuity forming the coupling inverter, the 
equivalent network of a propagating mode waveguide filter is shown in Figure 
6.44. The design procedure is based on a formulation proposed by Rhodes [23] for 
a distributed stepped impedance low-pass prototype. When the passband ripple ε, 
the lower and the upper cutoff frequencies fL and fH, and the filter order are speci-
fied, the procedure is as follows:

1.	  Determine the midband guide wavelength λg by solving 

Figure 6.42  (continued)
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	 For narrowband filters

Figure 6.43  Iris-coupled waveguide band-pass filter structure: (a) double iris, (b) septum, (c) asymmetric 
iris, and (d) symmetric iris. (b) Shows post-coupled waveguide band-pass filters, (a) shows dual-post and 
coaxial interface, and (b) shows a single-post with waveguide interface.

Figure 6.44  Equivalent circuit of a waveguide band-pass filter using inductive discontinuity.
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2.	 Determine the scaling factor α from
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3.	 Calculate the impedances of the distributed elements and impedance in-
verter values

4. 	  
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with

	 0 1 1NZ Z += = 	 (6.50)

In order to realize the value of a K-inverter, analyze the waveguide discontinuity 
that you have chosen from Figure 6.43. For example, if it is a symmetric iris filter 
(6.43(a, b, d)) then a symmetric iris is analyzed using a suitable analysis method. 
Once the two-port S-matrix of the jth iris is obtained, the equivalent T-network in 
Figure 6.44 is obtained by 
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The equivalent network of the discontinuity is shown in Figure 6.45
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The length of the waveguide section between the kth and the (k+1)th discontinuity 
is given by
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The desired value of a K-inverter is obtained by adjusting the dimensions of a par-
ticular discontinuity. For example, it is the iris opening, for an iris discontinuity, 
it is the septum width for a septum discontinuity and it is the post diameter if it is 
a post discontinuity. The design steps can be programmed on a computer. Figure 
6.46 shows the input and output files for an X-band double-iris-coupled filter. No-
tice from the synthesis file that the design frequency of the filter is not exactly the 
average of the lower and upper cutoff frequencies of the filter. This frequency was 
calculated using (6.44). Also, the rejection at 9.5 GHz is 8 dB less than the rejection 
specification of 40 dB. This is due to the dispersive property of the waveguide. A 
physically realized filter, using the above dimensions, may show a narrower band-
width and an upwardly shifted center frequency due to the tooling radius at the 
junctions forming the iris walls and the waveguide side walls.

Figure 6.47 shows the interface of a typical commercial waveguide filter design 
software. Appendix 6B shows the interface of a typical commercial waveguide fil-
ter wizard. 

6.2.10  Evanescent-Mode Waveguide Band-Pass Filter Design

The type of waveguide band-pass filter described in the previous sections has two 
elements. Those are the half-wave resonators consisting of waveguide sections 

Figure 6.45  Equivalent network of an inductive discontinuity in waveguide.
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operating in the propagating mode and the inverter forming below cutoff sections 
containing the discontinuity. We can replace the propagating mode section by a 
section of ridged waveguide and the inverters forming section can be replaced by 
a section of below cutoff waveguide without any discontinuity [25]. However, in 
the process of doing so, each resonator is bounded by two discontinuities between 
the ridged waveguide and the evanescent mode waveguide. The structure is shown 
in Figure 6.48 and the complete filter is shown in Figure 6.49. Advantages of an 

Figure 6.46   (a) Input file of waveguide filter design software, (b) output file of waveguide filter 
design software, and (c) computed frequency response of a double-iris waveguide filter.
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evanescent mode waveguide filter are compact size, steep skirt selectivity, and wide 
stopband. The disadvantages are lower resonator Q and power-handling capability. 
Despite the disadvantages, evanescent mode filters are used in many systems where 
a wide passband width, wide stopband width, and small size are required. In fact, 
the wide passband width, to some extent, compromises the passband insertion loss.

Figure 6.46  (continued)

Figure 6.47  Typical interface of waveguide filter synthesis software. (From [24].)
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Figure 6.48  Ridged waveguide resonators coupled by an inverter. Dimensions aridge and bridge are 
chosen so that the nonridged section is below cutoff for the fundamental TE10 mode of operation.

Figure 6.49  Evanescent mode waveguide band-pass filters: (a) double-ridge, and (b) single-ridge.
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The equivalent circuit of the filter is the same as that of a propagating mode 
waveguide band-pass filter (Figure 6.44). The equivalent circuit of the filter is ob-
tained by analyzing the discontinuities between the ridge waveguide and the eva-
nescent mode waveguide using the mode-matching method described in Section 
3.10.8. However, other methods like the finite element method or the finite differ-
ence time domain method would also be suitable. 

Since aridge and bridge are chosen to be smaller than a and b, respectively, quar-
ter-wave transformers are used between the evanescent mode filter and the input 
and output waveguides, as shown in Figure 6.49. Computer optimization is used to 
obtain the overall frequency response of the filter. WAVEFIL [24] waveguide filter 
design computer program designs, analyzes, and optimizes evanescent mode band-
pass filters. The computed response of an X-band evanescent mode band-pass filter 
is shown in Figure 6.50.

The stopband width of an evanescent mode waveguide band-pass filter can 
be improved by interposing inductive septa in the evanescent mode sections of the 
filter, as shown in Figure 6.51 [25]. The frequency responses of X- and Ku-band 
evanescent mode filters with added inductive septa are shown in Figure 6.52. The 
figure shows that stopbands almost up to the third harmonic are achievable using 
this technique. 

With the single-mode approach, the following formula

	
ζ

∠= 11

10

Sr 	

is used to estimate the initial value of the septum width. z10 is the propagation con-
stant of the ridged waveguide dominant mode, and ∠S11  is the phase angle of the 
dominant mode from the reflecting septum, as shown in Figure 6.51(e). The design 
procedure remains the same as that for a conventional evanescent mode filter. The 

Figure 6.50  Computed frequency response of X-band evanescent mode filter.
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only difference is that the calculation of the K-inverter also takes into consideration 
the reflecting septum. 

6.2.11  Cross-Coupled Resonator Filter Design 

Let us consider the generalized multiple-coupled resonator filter network in Figure 
6.32. The figure shows that coupling may exist among nonadjacent resonators in 
the filter. So far we have discussed only those filters in which there are no nonad-
jacent resonator couplings. Nonadjacent resonator couplings are also known as 

Figure 6.51  Evanescent mode band-pass filters: (c,d) conventional, and (a,e,f) with interposed 
inductive strips, and (b) end view. (From [25]. Reprinted with permission from the IEEE.)

Figure 6.52  Computed frequency response of evanescent mode filter with added inductive strips (From 
[25]. Reprinted with permission from IEEE.)
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cross couplings. There are several advantages of having cross couplings in a filter 
[26]. The most important advantage is that for the same filter order, a cross-coupled 
filter may offer much better selectivity than a Chebyshev filter. Also, using cross 
couplings of proper sign (negative or positive), considerable flat group delay within 
the passband can be obtained. However, flatter group delay is obtained at the ex-
pense of more delay and reduction in selectivity. Figure 6.53 (a) shows the effect 
of cross coupling on the frequency response of an otherwise sequentially coupled 
filter [27]. This circuit is known as a quadruplet. Figure 6.53(b) shows one possible 
physical realization of quadruplet using coaxial resonators. Figure 6.54 shows a 
possible realization of a triplet and its frequency response. Figures 6.54(b) shows 
the frequency response of a triplet for positive and negative cross couplings. Figure 
6.55 shows the frequency response of a quadruplet with multiple cross couplings 
that involve three or more signal paths.

In the first network of Figure 6.55, the outer path 1-2-3 combines with the in-
ner path 1-3 to form one transmission zero. The other transmission zero is formed 
by the paths 1-3-4 and 1-4. The inductive cross coupling between 1 and 3 generates 
both transmission zeros on the high frequency side; while capacitive cross coupling 
between 1 and 3 generates two transmission zeros on the low frequency side. 

Figure 6.56 shows two possible quintuplet configurations involving multiple 
couplings [27]. These are the only two configurations for achieving all three trans-
mission zeros on the same side of the passband. Other combinations exist that 
produce two transmission zeros above and one below the passband.

The coupling matrix of a cross-coupled filter for a prescribed frequency re-
sponse and coupling topology can be determined using various methods [27–30]. 
However, the most versatile one is the computer optimization based method due to 
Atia, Zaki, and Atia [31]. The method is as follows:

Let us consider the generalized multicoupled filter network in Figure 6.57.
The corresponding two-port representation of the network is shown in Figure 

6.58.The transfer function of the network in Figure 6.58 can be written as

	 ( )21 2 2
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1
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ε λ
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+ Φ 	 (6.54)
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is the characteristic function. The filter is a two-port network driven by a source of 
internal resistance R1 and terminated in a load R2. Also, the normalized frequency 
is

	
0 0

0

f ff
f f f

λ
 

= − ∆   	 (6.56)
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Figure 6.53   (a) The dashed line is the response of a Chebyshev filter without cross coupling. The 
solid line is the same filter with negative cross coupling between the first and fourth resonators, and 
(b) physical realization of a coaxial resonator quadruplet. (From [27]. Reprinted with permission from 
the IEEE.)

ziλ  and pjλ  are the poles and zeros of the filter transfer function. The scattering 
parameters of the network are obtained from the impedance matrix using (6.29). 
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In order to obtain the coupling matrix for a given coupling topology, the following 
penalty function is optimized

	 ( ) ( ) ( )
2

2 2

11 11
1 1

n n

ij zi zi
i i

Errf M S Sλ λ ε ε
= =

= + + −∑ ∑ 	 (6.57)

Figure 6.54   (a) Physical structure of coaxial line resonator triplet, and (b) and (c) frequency re-
sponse of a triplet for different cross couplings. (From [27]. Reprinted with permission from the IEEE.)
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The coupling topology matrix has all entries zero, except some of the nondiagonal 
ones that show the resonator connections. Such entries of the matrix are unity. 
The topology matrix can be used as the starting guess for the optimization. ε is 
calculated from the current trial matrix and e is the desired value of the scale factor 

Figure 6.55  Frequency response of a quadruplet with multiple cross couplings. (From [27]. Re-
printed with permission from the IEEE.)
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related to the passband ripple. The method is extremely robust and it converges 
very rapidly. A computer program can be developed for rapid generation of cou-
pling matrix for a given filter response where the transmission zeros can be conve-
niently placed (pole-placed) in the frequency domain. Let us consider an example. 
We need to generate the coupling matrix of a six-pole band-pass filter with two 

Figure 6.56  Two possible quintuplet-coupling configurations and the frequency responses. (From 
[27]. Reprinted with permission from the IEEE.)
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symmetrically placed transmission zeros above and below the passband. The filter 
has the following specifications:

1.	 Lower cutoff frequency = 0.69350 GHz
2.	 Upper cutoff frequency = 0.69925 GHz
3.	 Passband ripple = 0.03
4.	 Filter order = 6

The first transmission zero is at 0.69235 GHz and the second transmission zero is 
at 0.7004 GHz.

The desired coupling topology is shown in Figure 6.59, and the corresponding 
topology matrix is shown in (6.58). Using the topology matrix as the initial guess 
and the above coupling matrix generation scheme, the required filter coupling ma-
trix is generated as shown in (6.59). Generation of the matrix takes less than a 
second on a personal computer. The computed frequency response of the filter is 
shown in Figure 6.60. 

	 [ ]

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 1 0 1

0 0 1 0 1 0

0 0 0 1 0 1

0 0 1 0 1 0

T

 
 
 
 

=  
 
 
 
  

	 (6.58)

Figure 6.57  General multicoupled resonator filter network.

Figure 6.58  Two-port representation of a multicoupled resonator filter.
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	 [ ]
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0.2012 0 0.5488 0 0.7794 0

0 0 0.7794 0 1.0088

0 0 0.2012 1.0088 0

M

− 
 
 
 −

=  − 
 
 

−  

	 (6.59)

Having discussed the basic theory on which cross-coupled filters are designed, we 
are now in a position to describe the design steps of a real-world cavity filter. This 
design method is based on a tutorial by Mayer and Vogel of Ansoft Corporation 
[32]. The specifications of the filter are

1.	 Center frequency f0 = 400 MHz
2.	 Ripple bandwidth ∆f = 15 MHz
3.	 Passband ripple = 0.10 dB

Figure 6.60  Computed frequency response of six-pole cross-coupled band-pass filter. 

Figure 6.59  Coupling topology of a six- pole band-pass filter.
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4.	 Filter order N = 4
5.	 Locations of transmission zeros: 0.3876 MHz and 0.4115 MHz.

Figure 6.61 shows the equivalent network of the filter.
Based on the electrical specifications, we use the optimization method described 

in the previous section to generate the following coupling matrix.

	 [ ]
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0.2513 0 0.7717 0
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− 
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	 (6.60)

The corresponding coupling values to be realized are shown in the matrix

	 [ ]

0.02894 0 0.00942

0.02894 0 0.02863 0

0 0.02863 0 0.02994

0.00942 0 0.02894

L

L

Q

K

Q
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 
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 
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	 (6.61)

The required value of the external loaded Q, QL is 29.69. Figure 6.62 shows the 
basic resonator. It consists of a coaxial cavity with a rectangular outer conductor 
and a circular inner conductor. The space inside the cavity is entirely filled with air. 
The length of the resonator is so chosen as to have a resonance frequency at 400 
MHz. In fact, the resonance frequency can be always adjusted by a tuning screw 
inserted vertically through the top wall of the cavity, as shown in Figure 6.39. In the 
first step, using an arrangement shown in Figure 6.63 simulates the interresonator 
couplings. The basic procedure is the same as used in microstrip band-pass filter 

Figure 6.61  Equivalent network of four-pole cross-coupled band-pass filter.
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design, described in Section 6.2.6. Computed dependence on aperture opening is 
shown in Figure 6.64.

Figure 6.65 shows the locations of irises for different interresonator couplings. 
Please note that all positive couplings are achieved by irises on the ground of the 
resonators. An iris near the top of the cavity achieves only negative coupling be-
tween the first and fourth resonator. Figure 6.66 shows the circuit arrangement for 
determination of loaded Q (Qe ).

Keep in mind that while determining the interresonator couplings, we neglect-
ed the proximity effects of the nonadjacent resonators. Consequently, when the 
filter is assembled from the coupling database and the loaded Q database, slightly 
inaccurate couplings and loaded Q are obtained. Table 6.3 shows the difference 
between the target values and the achieved ones. Figure 6.67 show the computed 

Figure 6.62  Basic resonator-orientation. (From [32]. Reprinted with permission from Ansoft Corp.)

Figure 6.63  Dual resonator-orientation for coupling simulation. (From [32]. Reprinted with permis-
sion from Ansoft Corp.)

Figure 6.64  Dependence of coupling on iris opening. (From [32]. Reprinted with permission from 
Ansoft Corp.)
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Figure 6.65  Locations of irises for various couplings. (From [32]. Reprinted with permission from 
Ansoft Corp.)

Figure 6.66  Circuit arrangement for determination of loaded Q.

Table 6.3  Curve Fitting
Curve Fitting Results Original Targets

f1 = 399.93 MHz 400 MHz

f2 = 400.10 MHz 400 MHz

K12 = 0.03122 0.02894

K23 = 0.02819 0.02863

K14 =–0.00930 –0.00942

QL = 28.43 29.69

d12 =–0.0082 }

d23 =–0.0410 } were zero in circuit

d14 = 0.0363 }
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frequency response of the filter. The discrepancy between the target specifications 
and the achieved ones can be removed in either of two ways: (1) theoretically al-
tering the iris openings and the resonator lengths, and (2) using tuning screws to 
adjust the resonator lengths and the coupling iris dimensions. The parameters d12, 
d23, d14 are the required iris adjustment values. However, no matter how accurate 
the theoretical design is, postproduction bench tuning is invariably needed to ob-
tain the desired frequency response due to mechanical tolerencing during produc-
tion of the filter. Figure 6.68 shows the response of the tuned filter.

6.2.12  Design of Cross-Coupled Filters Using Dual-Mode Resonators

The operation of a dual-mode filter can be best explained by considering a circu-
lar waveguide dual-mode cavity filter [33]. A circular waveguide cavity is capable 
of holding two dominant degenerate TE111 resonant modes having orthogonal 
transverse field patterns. By the term degenerate, we mean both modes have the 
same resonant frequencies. However, if there is no discontinuity inside the cavity, 
both modes exist independently without influencing each other’s field pattern or 
resonance frequency. In other words the modes do not couple. Insertion of a tiny 
discontinuity at the proper location disturbs the field patterns and mode coupling 
takes place. Consequently, it is possible to realize a two-pole band-pass filter us-
ing only one physical cavity. Figure 6.69 shows a two-cavity, four-pole waveguide 
filter, which offers an elliptic response. The tilted near square large irises couple the 
degenerate modes in the same cavity. The amount of coupling depends on the aspect 
ratio of the iris. However, it does not have any tuning effect on the resonant modes 
if the tilt is exactly 45 degrees. On the other hand, if the iris is perfectly square and 
tilted around 45 degrees, then it will only have tuning effects but no mode coupling. 
In a first step toward the design, a coupling matrix is generated using the procedure 

Figure 6.67  Computed frequency response of the filter before adjustment. (From [32]. Reprinted 
with permission from Ansoft Corp.)
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described in the previous sections. Then the coupling values are transformed into 
K-inverter values using the following equations [34]

	 01 , 1 1
02N N

g

f
K K R

f

λ π

λ+

  ∆
= =  

 
	 (6.62a)

	

2

2
 

=   
pq pq

g

K Mλ π
λ 	 (6.62b)

Figure 6.68  Frequency response of tuned filter using HFSS. (From [32]. Reprinted with permission 
from Ansoft Corp.)

Figure 6.69  Circular cavity four-pole dual-mode band-pass filter.
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where R1 is the input and the output terminal resistance. In the next step, the inter-
cavity iris dimensions are adjusted by relating the K-inverter to the scattering pa-
rameter according to (6.51) and (6.52). The scattering parameters can be obtained 
by using a suitable EM analysis method. For the jth electrical cavity, the resonance 
condition is 

	 ,1 ,2 2 1, 2i
j j jl j i if β f π+ + = = − ⋅ 	 (6.63)

where bi is the propagation constant of the jth electrical cavity and ( )1 2 3
i i i il l l l= + +  is 

the effective total length of the ith physical cavity, as shown in Figure 6.70. Gener-
ally, f2i–1,1 + f2i–1,2 may not equal f2i,1 + f2i,2 for the ith physical cavity. A slight de-
viation in the cross-sectional dimensions of the cavity may result is different values 
for β2i–1li and β2ili to compensate for the loading between the (2i–1)th and the (2i)
th electrical cavities. Adjustment of cavity dimensions alters the coupling and vice 
versa. Therefore, an iterative method is needed. The method is implemented using 
computer optimization. Figure 6.71 shows the flow diagram for the optimization 
based iteration scheme. 

In order to determine the shape and the tilt of each tilted iris, the procedures 
described in [35–37] are used. As mentioned above, the shape of the tilted iris 
depends on the amount of coupling between the degenerate modes that is needed. 
It amounts to computing the split in resonance frequency when the modes are 
coupled. The coupling coefficient is given by

Figure 6.70   (a) Equivalent circuit of a dual-mode cavity with one end loaded with input/output 
coupling and the other end with intercavity coupling, and (b) equivalent circuit with both ends 
loaded with intercavity coupling. (From [34]. Reprinted with permission from the IEEE.)



6.2  Distributed Transmission Line Form of Capacitively Coupled Band-Pass Filter	 333

	

2 2
2 1
2 2

2 1
m

f f
k

f f

−
=

+ 	 (6.64)

Figure 6.71  Optimization-based iteration scheme for dual-mode waveguide filter design. (From 
[34]. Reprinted with permission from the IEEE.)
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where f2 is the higher frequency of the split degenerate resonance frequency and f1 
is the lower one. Equation (6.64) is the same as (6.31). However, in the present case 
both resonances occur in the same physical cavity. Figure 6.72 shows the implemen-
tation of McDonald’s method [36] for determination of f1 and f2.

Figure 6.73(a) shows the design dimensions of a 600-MHz circular cavity dual-
mode six-pole filter and Figure 6.73(b) shows the computed but unoptimized fre-
quency response. The coupling matrix of the filter is given by (6.59). At each step 
of the design the mode-matching method described in Section 3.10.8 was used.

The entire design process needed approximately 15 minutes on a Pentium III 
computer with 1-GHz clock frequency and 1 Gb of RAM. Such dual-mode filters 
can also be realized using square cavities instead of circular ones [38]. Other types 
of discontinuities like square corner cuts [31] or screws can replace the degener-
ate mode-coupling tilted irises. The amount of coupling for such types of mode 
couplers can be predicted with reasonable accuracy using perturbation theory or 
closed-form equations [37]. The tilted rectangular irises can be replaced by off-
circular or elliptic irises [38]. Such irises have special advantages over rectangular 
ones from a manufacturing point of view because they are devoid of tooling radii at 
the four corners of the iris. As well, the filters can handle a larger amount of power.

6.2.13   Folded Resonator Cross-Coupled Filters

Waveguide cross-coupled filters can also be realized using a folded resonator con-
figuration [39,40]. Figure 6.74 shows the configuration of a four-pole waveguide 
iris-coupled cross-coupled filter.

The design steps for folded waveguide cross -coupled filters are as follows:

Figure 6.72  Implementation of McDonald’s [36] method.
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1.	 From the required loaded Q-factor Qe determine the K-inverter value K01 
and KN,N+1 (assuming the terminations at either end are equal). Then, de-
termine the iris width required to realize the required K-inverter value and 
the associated phase f01. The method is the same as in realization of se-
quentially coupled synchronously tuned Chebyshev or Butterworth filter 
designs described in previous sections.

2.	 From the computed coupling matrix determine the K-inverter value K12. 
Repeat the procedure described in step 1 to obtain the iris width and the 
associated phase f12.

3.	 Compute the length of the first resonator as 

	 ( )1 01 12

1
2 2

gol
λ

π f f
π

 = − +  
	 (6.65)

Figure 6.73   (a) Designed dimensions of a six-pole circular cavity dual-mode filter, and (b) com-
puted frequency response of a six-pole circular cavity dual-mode-filter.



336	 �����������������Band-Pass Filters

4.	 Repeat step 3 for up to the resonator right before the resonator forming 
the fold. For example, if it is a six-pole filter, the third and the fourth reso-
nators form the fold. Therefore, we need to repeat step 3 up to the third 
resonator.

5.	 Due to symmetry, the dimensions of resonator 6 are the same as that of 
resonator 1 and the dimensions of resonator 5 are same as those of resona-
tor 2. 

6.	 If it is an E-plane fold, then use a 3-D simulator to analyze the structure 
shown in Figure 6.75. From the two-port S-matrix compute the K-inverter 
value using (6.51) and (6.52). Adjust the slot dimensions to realize K34 and 
record the associated phase angle f34. Knowing f23 and f34, determine the 
lengths of the third and the fourth resonators using equation

	 ( )3 23 34

1
2 2

gol
λ

π f f
π

 = + +  
	 (6.66)

	 For H-plane folding, the equation becomes

	 ( )3 23 34

1
2 2 2

go gl
λ λ

π f f
π

 = + + +  
	 (6.67)

Figure 6.74   (a) H-plane folded cross-coupled waveguide filter, (b) the magnetic field pattern, and 
(c) E-plane folded cross-coupled filter. (Reprinted with permission from E. Ofli, D.Sc thesis, Swiss 
Federal Institute of Technology, Zurich.)
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7. Add a round hole on the common broad wall between resonators 1 and 6 
and analyze and optimize the frequency response of the filter structure us-
ing a 3-D simulator. 

The entire operation of folded cross-coupled rectangular waveguide band-pass 
filter design can be performed using standard commercial software like HFSS or 
WASPNET. Figure 6.76 shows the configuration of an H-plane folded E-plane sep-
tum filter with  four poles. The computed frequency response of the filter in Figure 
6.77 shows the effects of various types of cross couplings on the filter response. 
Those include the direct cross coupling between the input and the output, also 
known as source-load coupling [39]. Figure 6.77 shows that source-load coupling 
has distinct advantages over direct cross coupling as far as skirt selectivity and stop-
band width are concerned. For an N-pole filter they can implement N transmission 
zeros in place of (N–2) transmission zeros in an uncoupled source and load filter. 
The additional two transmission zeros can be properly placed in order to obtain 
better group delay or an improved passband without affecting the passband ripple, 
which is controlled by the number of resonators. These advantages, however, come 
at a price. The filter response is very sensitive to the location of the cross-coupling 
hole.

The design steps for cross-coupled waveguide filters can be programmed and 
the entire design process can be made very fast and accurate. Please see Appendix 
6B for a description of a commercially available filter wizard that designs cross-
coupled waveguide filters.

Figure 6.75  E-plane fold with coupling slot on the common broad wall.
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6.2.14  Cross-Coupled Filters Using Planar Transmission Lines

Cross-coupled filters can also be realized using planar transmission lines such 
as stripline, suspended stripline, and microstrip line. An excellent account of 

Figure 6.77  Frequency response of the filter shown in Figure 6.76 with different types of cross 
couplings. (From [39]. Reprinted with permission from E. Ofli, D.Sc thesis, Swiss Federal Institute of 
Technology, Zurich.)

Figure 6.76  Cross-coupled E-plane septum filter with H-plane folding. (From [39]. Reprinted with 
permission from E. Ofli, D.Sc thesis, Swiss Federal Institute of Technology, Zurich.)
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realization of such filters can be found in the classic text by Hong and Lancaster 
[41] Figure 6.78(a) shows the most convenient resonator configurations for cross-
coupled planar filters [42]. These structures are modified versions of a basic hairpin 
resonator. Figure 6.78(b) shows a straight sequentially coupled filter configuration 
using the resonators shown in Figure 6.78(a). The general forms of cross-coupled 
planar filters are shown in Figure 6.78(c).

The design method for cross-coupled planar filters is the same as that for cross-
coupled waveguide filters. However, the interresonator coupling data and input/
output loaded Q databases are generated by using the method shown for the mi-
crostrip interdigital filter above. Iliev and Nedelchev [42] have presented the fol-
lowing analytical equations for a folded and capacitively loaded hairpin resonator 
(see Figure 6.78(b)) cross-coupled filter designs. Inductive, capacitive, or mixed 
coupling between modified hairpin resonators can be obtained based on the orien-
tations of the resonators. Figure 6.79(a) shows the resonator orientation for mag-
netic coupling. The corresponding coupling coefficient is given by
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	 (6.68)

where Zc is the resonator impedance or the characteristic impedance of the trans-
mission line forming the hairpin. Ze and Zo are the even- and odd-mode character-
istic impedances, respectively, of the coupled lines, θs is the electrical length of the 
resonator, θc is the electrical length of the coupled portion of the resonator, and b is 
the admittance slope parameter of the resonator. The admittance slope parameter b 
of the resonator is given by [42]

	
2

A B
b

C
+

= − 	 (6.69)

where

Figure 6.78  (a, b) Modified hairpin resonators, and (c) cross-coupled modified hairpin-line filters. 
(From [43]. Reprinted with permission from Microwave Review.)
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and the electrical length θp of the coupled line part of a single resonator is given by 
(see Figure 6.80).
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Figure 6.79(b) shows the orientation of the resonators for electrical coupling be-
tween them. The corresponding coupling coefficient is given by
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	 (6.71)

Figure 6.79(c) shows the mixed coupling configurations for modified hairpin reso-
nators. The coupling coefficient for configuration (a) is given by 

	 1
2 2

1 1 1
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o e

k
b Z Z

 
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 
	 (6.72)

where

Figure 6.80  Tap-point location in hairpin-line filter. (From [43]. Reprinted with permission from 
Microwave Review.)
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The coupling coefficient for configuration 6.79c(b) is given by [43]
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The tapped input and output locations are determined from (see Figure 6.80)
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The above equations are accurate as long as the parasitic effects of the bends and 
discontinuities in the resonators are negligible at low frequencies. As the frequency 
rises, one has to take into consideration these parasitic effects. Otherwise, the best 
way would be the 3-D simulator based approach described for the microstrip in-
terdigital filter. One can always use the generalized coupling matrix for a design. 
However, in most cases, Levy’s [44] low-pass prototype with single transmission 
zero at real or imaginary frequency may be used as follows.

The relations between the band-pass design parameters and the low-pass ele-
ments are [44] 
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Levy’s [44] low-pass prototype is shown in Figure 6.81.
The design steps are as follows:

Figure 6.81  Levy’s low-pass prototype with a single transmission zero.
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1.	 Choose the electrical length θs of the resonator, characteristic impedance Zc 
and the even- and odd-mode impedances Zpe and Zpo of the coupled port 
and calculate the line length using (6.70);

2.	 Calculate the admittance slope parameter using (6.69);
3.	 Calculate the coupling parameters using (6.68) or (6.71) or (6.72) or (6.73), 

depending on the type of coupling needed;
4.	 Determine the tap-point location using (6.74);
5.	 Determine the geometrical parameters of the filter using a particular 

substrate;
6.	 Optimize the frequency response of the filter using an analysis software.

Figure 6.82 shows the frequency responses of a 5% bandwidth four-pole cross-
coupled filter centered at 1.44 GHz. The corresponding coupling parameters are 
shown below.

Figure 6.82   (a) A 1% bandwidth cross-coupled filter response, and (b) a 5% bandwidth microstrip 
cross-coupled filter response. (From [42]. Reprinted with permission from Microwave Review.)
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6.3  Cross-Coupled Band-Pass Filters with Independently Controlled 
Transmission Zeros

Whether it is a triplet, quadruplet, or quintuplet, if a single cross-coupling value 
is altered, the alteration affects all the transmission zeros. This is not convenient 
from the standpoint of tuning the filter after fabrication. Cascading triplets, qua-
druplets, quintuplets, and so forth can overcome this drawback of a cross-coupled 
filter. As an example, let us consider the cross-coupled quadruplets shown in Figure 
6.55. Figure 6.83 shows the frequency response of a filter formed by cascading the 
quadruplets. In the eight-resonator filter, the low-side transmission zeros are pro-
duced by the resonators 1–4 and the high-side transmission zeros are produced by 
resonators 5–8. Design of each N-tuplet can be accomplished by using the method 
described in Section 6.2.11. The cascaded structure can be further improved by 
another round of optimization by the method used for the individual N-tuplets. 
However, Levy has presented closed-form equations for cascaded quadruplets CQ 
[45]. Cascaded N-tuplets based band-pass filter designs are extremely useful in base 
station diplexer design for cellular radio. The quadruplets shown in Figure 6.83 

Figure 6.83  Cascaded quadruplets and the frequency response. (From [27]. Reprinted with permis-
sion from the IEEE.)
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have special significance as basic building blocks in cross-coupled band-pass filter 
design. They have a diagonal cross-coupling element. The diagonal cross coupling 
can be eliminated by choosing the complex transmission zero as si = ±σi ±ωp0  where 
ωp0 is the center frequency of the passband [46]. In a direct synthesis approach by 
Sen et al. [46], ωp0 depends on the number of transmission zeros at s = 0 and s = ∞, 
together with the other transmission zeros. That is, it is not the geometric mean of 
the upper and the lower cutoff frequencies but somewhere between the geometric 
and the arithmetic center of the passband. The actual center frequency is found by 
using an iterative method. Also, all elements of the quadruplet come out to be posi-
tive if σi and ωi are chosen in the ranges ∆ω/4 < σi < ∆ω and 0.8ωp0 < ωi < 1.2ωp0 
where ∆ω = ωp2 – ωp1 is the bandwidth of the filter. In order to achieve a linear 
phase response, one should select [46]

	
0

2i

i p

ω
s

ω ω

∆ = 

≈ 

	 (6.76)

The above condition also guarantees CQ sections without cross couplings. An ex-
cellent account of synthesis of N-tuplet filters can be found in a review article by 
Yildirim et al. [47]. For CAD of cross-coupled filters and filters involving cascaded 
N-tuplets, FILPRO [48] is a usefull software. While dealing with multiresonator 
cross-coupled band-pass filters, the possible topologies are virtually innumerable 
depending on the number of resonators and the types of coupling. However, in real-
ity only a small fraction of those topologies are used in practice and a large majority 
are of academic interest only. 

6.4  Unified Approach to Tuning Coupled Resonator Filters

In the preceding sections we described the design of coupled resonator band-pass 
filters. In general, a filter can be designed using approximate circuit theory or trans-
mission line theory. However, in all cases each approximate design can be exactly 
tuned, before fabrication, in virtual reality with the help of exact electromagnetic 
simulation. A good designer should consider the effects of manufacturing toler-
ances in the simulation and computer tuning so that the fabricated prototype will 
need the minimum or very little tuning. In the case of the expected performance of 
the filter deviates from the predicted one, postproduction tuning becomes neces-
sary. Fortunately, the art of experimental tuning of multicoupled resonator filter 
advanced considerably during the absence of modern EM simulators. Therefore, it 
can be used to some extent to correct any undesirable performance of a band-pass 
filter. We briefly discuss the most commonly used tuning method for the sake of 
completeness. The method due to Ness [49] is as follows. It can be shown that [49] 
the reflection group delay of a band-pass filter contains all the necessary informa-
tion regarding coupling coefficients among various resonators. One can, therefore, 
use a vector network analyzer to adjust the couplings. We reconsider the evolution 
of an inverter coupled band-pass filter from the corresponding low-pass filter in 
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Figure 6.84 [49]. It can be shown that the reflection group delays of the circuits are 
related to the filter specifications, as shown in Table 6.4.

The corresponding shapes of the reflection group delay response and the cou-
pling values are shown in Table 6.5. The step-by-step tuning procedure can be il-
lustrated by considering a filter design example [49]. The procedure is applicable 
to any general filter structure provided that the actual resonators and coupling net-
works are accurately modeled by LC networks over the frequency band of interest. 
Suppose we need to design a band-pass filter with the following specifications and 
a Chebyshev response:

Center frequency f0 = 2.300 GHz

Ripple bandwidth ∆f = 26.90 MHz

Passband ripple = 0.01 dB

Number of sections N = 6

Table 6.6 shows the required computed reflection group delay and coupling 
values based on the formulas in Table 6.4.

The filter was realized in combline form [49] using round rods and tapped 
input and output ports, as shown in Section 6.2.8. The resonance frequency of 
each resonator was precisely controlled by tuning and coupling screws, as shown 
in Figure 6.41(c). Using a calibrated vector network analyzer, the reflection group 
delay for the input and output resonators were set to 18.5 ns at 2.30 GHz. In the 
next step. resonator 6 is shorted and the tuning process started at resonator 1. The 
basic steps are as follows [49]:

1.	 Short all resonators except resonator 1. 

Figure 6.84  Circuit elements for (a) low-pass, (b) band-pass, and (c) inverter-coupled band-pass 
filter structures.
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2.	 Adjust resonator 1 and the input coupling to obtain the specified reflection 
group delay (18.5 ns in the present case).

3.	 Tune resonator 2 and the coupling between resonator 1 and resonator 2 
to obtain a symmetrical reflection group-delay response about the center 
frequency f0 (2.30 GHz in the present case). It may be necessary to readjust 
resonator 1 if the coupling is large enough to detune resonator 1.

Table 6.5  Group Delay Responses and Coupling Values

Table 6.4  Reflection Group Delays for Filters
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4.	 Progress through the filter, tuning each resonator in turn and maintaining 
symmetry of reflection group-delay response by retuning the previous reso-
nators if necessary.

5.	 When the last resonator is reached, observe the amplitude response of the 
filter and tune the last resonator and final interresonator coupling screw to 
obtain the desired return loss. 

The only pitfall of the above method is masking of the group-delay response in the 
case of low-Q resonators. Finite Q has opposite effects on odd- and even-numbered 
resonators. In the former situation finite Q increases the measured coupling, while 
in the latter case it reduces the measured coupling.

6.5  Dielectric Resonator Filters

6.5.1  Introduction

In Section 6.1, we mentioned how a resonator forms the core of a microwave band-
pass filter. In the preceding six sections we have discussed various types of resona-
tors. The majority of those resonators are basically metallic cavities offering good 
power-handling capability and very low insertion loss or high unloaded Q-factor. 
A high unloaded Q-factor is the most essential factor from the standpoint of signal 
distortion and signal loss in a band-pass filter. Figure 6.85 shows the effect of finite 
Q on the frequency response of a band-pass filter.

The unloaded Q of a resonator is proportional to the stored energy to the dis-
sipated energy in the cavity forming the resonator. Most of the electromagnetic 
energy in a dielectric resonator is confined within the dielectric body, when the 
dielectric constant (εr ≈ 20 – 80) is substantially higher than that of the free space. 
The electromagnetic field within the resonator has the pattern of the field inside 
a metallic cavity of the same shape. However, unlike in a metallic cavity, it decays 
in space within an extremely short distance from the walls of the cavity. Conse-
quently, the side walls of the cavity can be approximated by a magnetic wall. Figure 
6.86 shows the configuration of a cylindrical dielectric resonator while Figure 6.87 
shows the field pattern in the resonator. Since almost the entire field is confined 
to the material, the unloaded cavity factor of the resonator becomes equal to the 
Q-factor (1/tan δ) of the material itself. Even when the resonator is enclosed in a 
metallic enclosure, the enclosure walls have a negligible effect on the Q-factor of 

Table 6.6  Computed Reflection Group Delays and Coupling Values

Resonator QE or kij Gd (ns)
Measured Coupling 
(Frequency Crossing)

1 66.8 18.5

1, 2 .01135 32.2 .00112

1, 2, 3 .00771 58.5 .00772

1, 2, 3, 4 .00726 68.5 .00724

1, 2, 3, 4, 5 .00771 93.9 .00775

1, 2, 3, 4, 5, 6 .01135

6 66.8
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the resonator, provided the distance of the walls are more than twice the largest 
dimension of the resonator. Also, for the resonator mode to be completely of the 
dielectric resonator, the metallic enclosure should not allow any waveguide mode 
(i. e., the enclosure’s dimensions should ensure a below cutoff or evanescent  mode 
situation for the operating bandwidth). 

Although resonance in dielectric bodies was reported first in 1939 [52], the 
first reported applications of dielectric resonators in microwave filters were by 
Harrison [53] and Cohn [54]. However, it took nearly a decade and a half for di-
electric-resonator-based filter technology to become a viable option because of the 

Figure 6.86  Isolated circular cylindrical resonators.

Figure 6.85  Effect of finite Q on the response of a band-pass filter. (From [51]. Courtesy of the 
Department of Electrical Engineering, University of Leeds.)
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nonavailability of suitable dielectric materials with very high temperature stability, 
mechanical rigidity, and low thermal expansion coefficient. The temperature sta-

bility of the dielectric resonator material is defined by a factor 1
2f f TTC τ α

 = − +  
[55] where αT is the linear thermal expansion coefficient and τf is the temperature 
coefficient of the dielectric constant. For microwave ceramic materials, αT ranges 
between ±10 ppm/°C. It is the manufacturing process that has to take care to pro-
vide good control of the three main parameters (εr, Q,and TCf) of a dielectric 
resonator. Appendix 6C presents typical specifications for standard dielectric reso-
nators from TCI Ceramics.

6.5.2  Modes in a Dielectric Resonator

6.5.2.1  Modes and Mode Nomenclature

Figure 6.86 shows an isolated circular cylindrical resonator. The resonating modes 
of such a resonator can be classified by three distinct types: TE (TE to z), TM (TM 
to z), and hybrid. The fields for the TE and TM modes are axisymmetric and thus 
have no azimuthal variation. In contrast, the fields of hybrid modes are azimuthally 
dependent. The subclasses of hybrid modes are HE and EH. For HE modes, the 
Hz field is quite small compared to the Ez field. The other field components can be 
derived from the Ez only. The reverse is true for EH modes [55].

To denote the variations of the fields along the azimuthal, radial, and axial di-
rection inside the resonator, the mode indices are added as subscripts to each fam-
ily of modes. The TE, TM, HE, and EH modes are classified as TE0mp+δ, TM0mp+δ, 
HE0mp+δ, and EH0mp+δ modes, respectively. The first index denotes the azimuthal 
variation of the fields. The azimuthal variation is of the form cos(nf) or sin(nf). 

Figure 6.87  E (–) and H (-----) field plots for the pertinent resonance modes in a dielectric disk 
resonator.
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The index m (m = 1.2.3,....) denotes the order of the variation of the field along the 
radial direction and the index p+δ (p=0,1,2,3......) denotes the variation of the field 
in the z-direction. 

In all filter applications, a dielectric resonator is placed in a metallic enclosure. 
As a result, the hybrid mode nomenclature, in some cases, becomes inconsistent. 
However, it is not an important issue, since most modern-day designs are based on 
full 3-D electromagnetic solvers. 

6.5.2.2 Pertinent modes in Dielectric Resonators (DR) filters

Out of the all the resonance modes described above, the pertinent ones in filter de-
sign are TE01δ, TM01δ, HE11δ, and EH11δ. The corresponding E and H field patterns 
are shown in Figure 6.87 [56].

Table 6.7 shows the list of the principal modes and some higher-order modes 
and their field expressions [55].

6.5.2.3  Resonant Frequencies of Isolated Circular Cylindrical Dielectric Resonators

The determination of the resonant frequency of an isolated dielectric resonator re-
quires rigorous electromagnetic and numerical analysis [55]. However, such analyses 
are of limited interest to a DR filter designer because of their complexity. One is in-
terested in computing the value of the normalized wave number k0a for a given value 
of εr and aspect ratio (H/a) of the resonator where k0 = 2ϖfr /c denotes the free-space 
wave number corresponding to the resonant frequency and c is the velocity light in 
free space. If the value of εr » 100, the value of the normalized wave number varies 
with εr as 

	 0
1∝
r

k a
ε 	 (6.77)

Table 6.7  Principal Modes in Dielectric Resonators
Mode Plane of Symmetry (z=0) Fields inside Resonator

TE016 Mag. wall Hz = J0(hr) cos(bz)
Ez = 0

TE011+z Elect. wall Hs = J0(hr) sin(bz)
Ez = 0

TM011 Elect. wall Ez = J0(hr) cos(bz)
Hz = 0

TM011+z Mag. wall Ez = J0(hr) sin(bz)
Ez = 0

HE114 Elect. wall cos
1 sin(hr)cos( )
0
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E J z
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for a given aspect ratio (H/a) of the resonator. Mongia and Bhartia [55] presented 
closed-form equations for the resonant frequencies of the four most important 
modes TE01δ, TM01δ, HE11δ, and EH11δ. The equations were based numerical anal-
yses results and use a modified version of (6.77) as 

	 0
1∝
+r

k a
Xε 	 (6.78)

where the value of X is important for low dielectric constant materials used in 
dielectric-resonator-based antennas. According to [55], it has value between 1 and 
2. But for filter applications, where in most cases the dielectric resonator is enclosed 
within a metallic enclosure, we suggest a value of –1 for X. Table 6.8 shows the 
closed-form equations for the resonance frequencies pertaining to various modes. 

6.5.2.4  Design of Dielectric resonator Filters

Dielectric resonator filters are mostly of the band-pass type. However, dielectric 
resonator band-stop filters are also used in many applications [56]. As well, dielec-
tric resonator filters are either monomode (single-mode) or multimode (more than 
one mode). In a multimode filter, the resonators support multiple resonances in 
the same single physical structure. This is similar to a metallic waveguide resonant 
cavity supporting degenerate resonances. This multimode supporting capability, 
extremely high Q, and compact structure gives dielectric resonator band-pass filters 
many advantages over waveguide cavity filters.

Among all multimode filters dual-mode filters are the most common in many 
applications. Because a dual-mode filter is the best compromise between the mono-
mode and other multimode filters in terms of mode excitation, tuning, and fab-
rication, filters comprising such a resonator are most common. However, mono-
mode as well as triple-mode filters are also used. Monomode filters are easiest to 
fabricate and tune. In almost all filters the resonator is enclosed within a metallic 
enclosure to avoid radiation losses. The dimensions of the enclosure should be 

Table 6.8*  Equations for Calculating Resonance Frequencies
Mode Resonant Frequency Range of Validity

HE11δ 2
6.324

0.02 0.36 0.27
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f

H Haπ ε
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*See Figure 6.86. 
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such that without the dielectric block it is a piece of waveguide below cutoff or 
an evanescent mode waveguide. Under no condition should the structure behave 
like a dielectric-loaded cavity resonator. The resonances take place only within the 
dielectric block. The coupling between two resonators is brought about by physical 
proximity, irises, or probes. The polarity of the coupling is achieved by the orienta-
tion and location of an iris. Figure 6.88 shows the two commonly used orientations 
of dielectric resonators in a below-cutoff waveguide. 

In Figure 6.88(a) the resonators are excited in the TE01δ mode. In Figure 6.88(b) 
the resonators are excited in the TM01δ mode. The regular waveguide mode (TE10) 
is launched by coaxial probes or loops. The resonators may be resonated in other 
hybrid modes. A five-pole monomode Chebyshev filter is designed with waveguide 
input and output based on following specifications:

1.	 Center frequency = 10.65 GHz
2.	 Passband ripple = 0.10 (–16 dB return loss)
3.	 Filter order 5
4.	 Resonator εr = 36
5.	 Waveguide interface is WR75 (a = 0.75” b = 0.375”)

Figure 6.88   (a) Horizontally oriented puck in a rectangular enclosure, and (b) vertically oriented 
puck in a circular cylindrical enclosure. 



6.5  Dielectric Resonator Filters	 355

6.	 Resonance mode is TE01δ

The design method is described in Section 6.2.6 for a microstrip band-pass filter. 
Figure 6.89(a) shows the simulation setup for the resonance frequency determina-
tion using a simulator. 

The resonance frequency can be adjusted by altering the cross-sectional dimen-
sions of the below-cutoff waveguide or by a tuning plate above the dielectric puck. 
Figure 6.89(b) shows the arrangement for simulation of coupling coefficient. The 
coupling can be adjusted by varying the distance S between the resonators or iris 
opening. Figure 6.89(c) shows the response of a two-resonator circuit in Figure 
6.89(b). The coupling coefficient is determined by using (6.31). Once the coupling 
coefficients for various values of S have been obtained, a design curve like the one 
shown in Figure 6.35 is drawn. The required coupling coefficients for the design 
are obtained using the method of Section 6.2.6. They can also be obtained by mul-
tiplying the corresponding elements of the coupling matrix by the fractional ripple 
bandwidth. Figure 6.90 shows the coupling curve obtained via numerical simula-
tion using WASP-NET software. Although an FEM-based software could be used, 
WASP-NET is very fast because it combines the mode-matching FEM and BEM 
methods. 

Using the coupling curve in Figure 6.90, the interresonator separations are ob-
tained and the filter is tuned using optimization by WASP-NET3 software. The two 
outermost couplings are realized by irises. Figure 6.91 shows the 3-D view of the 
filter and the computed frequency response.

Dielectric resonator filters can also be realized using the TM01δ  mode. Figure 
6.92 shows the configuration of a TM01δ  band-pass filter with coaxial line input 
and output [57]. The design methodology for the filter is the same as the one fol-
lowed in the previous example. Figure 6.93 shows the configuration of the dielec-
tric resonator in a below-cutoff metallic enclosure. The dielectric puck of dielectric 
constant εrd diameter c1 is aligned  uniaxially in the enclosure and is supported by a 
spacer annular support of low dielectric constant, which has a negligible effect on 
the resonance (i.e., εb « εrd).

Figure 6.94 shows a coupled pair of resonators separated by a distance 2h. 
The designer must ensure that (pf0c2)/c < 2.405 in order to ensure that the circular 
enclosure is evanescent. The structure can be analyzed using a 3-D simulator such 
as HFSS or WASP-NET. Once again, for every simulation for a specific value of h, 
a two-peak resonance curve is obtained and the coupling coefficient is calculated 
using (6.31). The coupling analysis can also be done using a one port simulation. 
The configuration for a one-port analysis is shown if Figure 6.95.

In this method, the short- and open-circuit walls are created exactly at the 
center between the resonators at a distance h from either resonator and the reso-
nance frequency of S11 is noted. If the resonance frequencies corresponding to the 
short- and open-circuit conditions are fsh and fop, respectively, then the TM mode 
resonance is given by [57]

	
2 2

2 2

op sh

op sh

f f
K

f f

−
=

+ 	 (6.79)

3.	 See Chapter 5 [24].
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Figure 6.89   (a) Simulation of resonance, (b) simulation of coupling, and (c) form of coupling curve.
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Figure 6.96(a) shows the simulated values of the resonant frequencies and Figure 
6.96(b) shows the computed coupling factors for DR radius = 7.4 mm, DR thick-
ness = 8.6 mm, cavity radius = 10.8 mm, εrd = 82, and εb = 2.1.

A three-pole band-pass filter was designed for 1.25% fractional bandwidth 
centered around 3.2-GHz and 20-dB passband return loss. Figure 6.97 shows the 
designed filter. Figures 6.98 and 6.99 shows the computed and measured frequency 
responses of the filter. Note that the center frequency of the measured filter is 
shifted by 60 MHz upward. This is due to the inaccuracy of the dielectric constant 
of the resonator.

In the above example, one notices that the difference between a sequentially 
coupled circular cavity waveguide filter and the above filter is that in the above fil-
ter, the dielectric puck plays the entire role of a resonator. Therefore, as in a circular 
waveguide cavity filter, degenerate multimodes can be coupled in the same dielec-
tric puck in more or less the same way that is achieved in a waveguide circular or 
rectangular cavity. Figure 6.100 shows the similarity between a dual-mode circular 
cavity filter and a dual-mode dielectric resonator filter [58,59].

Figure 6.101(a) shows the practical configuration of a dual-mode dielectric 
resonator six-pole filter [60]. In this design the degenerate modes are two orthogo-
nal EH11δ modes. The design methodology, based on full 3-D EM simulation, is the 
same as in the sequentially coupled DR filter [57] described above. Figure 6.101(b) 
shows the response of a four-pole dual-mode filter.

The main purpose of a cross-coupled filter is to generate a higher skirt selectiv-
ity in the immediate vicinity of cutoff frequencies than in a Chebyshev filter. How-
ever, cross couplings are also used for group delay equalization. In filter design, 
the art of simultaneous achievement of skirt selectivity and flat-group delay, using 
various permutations and combinations of negative and positive cross couplings, is 
itself a vast subject and it is beyond the scope of this text. Also, one should keep in 
mind that whether the DR filter is a waveguide or coaxial line type depends only 
on the type of the input/output interfaces. 

It is not always true that only cross coupling can generate pole extraction for 
higher skirt selectivity. Another way is to cascade a pole extracting band-stop sec-
tion with the band-pass filter. A very unique way to generate controllable transmis-
sion zero in TE01δ mode DR filter is proposed and demonstrated by Ouyang and 

Figure 6.90  The coupling curve.
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Wang [61]. Consider the field distribution in a circular dielectric puck in Figure 
6.102(a).

The field resembles that of an axial magnetic dipole. Such resonators are often 
excited by a probe-type feeding structure. The magnetic field in the iris between the 
first resonator and the second resonator in a filter points vertically, either upward 
or downward. Therefore, the problem of the first cavity can be treated in such a 

Figure 6.91   (a) A filter (3-D view), and (b) computed frequency response of the filter (WASP-NET analysis 
and optimization).
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way that the second cavity is replaced by a waveport, as shown in Figure 6.102(b) 
and (c).

Then, the structure is analyzed using HFSS. Figure 6.103 shows the comput-
ed results. From Figure 6.103, we note that there is a transmission zero fz near 

Figure 6.92  Configuration of dielectric resonator filter supporting the TM01δ mode [57]. (Repro-
duced courtesy of the Electromagnetics Academy.)

Figure 6.93  Configuration of a single resonator in a below-cutoff metallic enclosure [57]. (Repro-
duced courtesy of the Electromagnetics Academy.)

Figure 6.94  Coupled pair of resonators [57]. (Reproduced courtesy of the Electromagnetics 
Academy.)
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the main resonance frequency. The location of the transmission zero follows the 
following rules:

1.	 When θ < 180°, fz is located on the left side of the resonance and its shifts 
leftward with increasing θ;

2.	 When θ < 180°, fz is located on the right side of the resonance and its shifts 
leftward with increasing θ; 

3.	 When θ = 180°, fz does not exist.

The mode operation occurring for a feeding angle of 270° can be described by EM 
simulation of the electric field distribution shown in Figure 6.104(a). 

The input or the output excites the resonant TE01δ mode at the first or the last 
resonator, respectively. The iris is coupled to the probe by the evanescent TE10 
mode. When the feed angle is 180° the E-field assumes an orthogonal position, as 
shown in Figure 6.104(b). Since there is no horizontal part of the E-field through 
the iris, the nonadjacent resonator is not excited and consequently no transmission 
zero results. In higher-order TE01δ  DR filters, fz is shifted by the coupling from 
source/load to the nonadjacent resonator. Figure 6.105 summarizes the location 
of fz for different values of the shadowed zone, while the field distribution in the 
resonator is still in TE01δ mode. Therefore, it is possible to achieve the range for 
fz between 1.7 to 2.1 GHz centered around 1.864 GHz. Figure 6.106 shows three 
possible configurations of the filter. The resulting triplet topology is shown in Fig-
ure 6.107. 

In Figure 6.106(a), the input and the output feeding angles are at 180°; there-
fore, no coupling takes place from the source and the load to the adjacent resona-
tors. Consequently, a transmission zero is created near the passband. In Figure 
6.106(b), the output feeding angle is reduced to 90°, so negative coupling for a 
triplet section has been realized with the inline configuration. The triplet section, 

Figure 6.95  Configuration for a one-port simulation [57]. (Reproduced courtesy of the Electromag-
netics Academy.)
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Figure 6.96   (a) Resonance frequencies from simulation, and (b) coupling curve for the filter design 
[57]. (Reproduced courtesy of the Electromagnetics Academy.)

Figure 6.97  The designed filter [57]. (Reproduced courtesy of the Electromagnetics Academy.)
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starting from the load side to the last two resonators, introduces a transmission 
zero near the passband. In Figure 6.106(c), the feed angles are 90° and 270° at the 
input and output, respectively. The negative coupling from the input to the first 
two resonators generates a transmission zero below the passband. The positive 
coupling from the output to the last two resonators generate a transmission zero 
above the passband. The three situations are summarized in Figure 6.108.

A four-pole band-pass filter using TE01δ was designed for a 20-MHz ripple 
bandwidth centered around 1.85 GHz and 0.036 dB passband ripple. The stop-
band zeros were located at 1.785 and 1.930 GHz. The coupling matrix (see Figure 
6.108) is 

Figure 6.99  Measured response of the filter [57]. (Reproduced courtesy of the Electromagnetics 
Academy.)

Figure 6.98  Computed frequency response of the filter [57]. (Reproduced courtesy of the Electro-
magnetics Academy.)
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1.06154 0.1938 0.93 0 0 0

0.1481 0.93 0.1237 0.7254 0 0

0 0 0.7254 0.1176 0.93 0.1342

0 0 0 0.93 0.1681 1.06154

0 0 0 0.1342 1.0654 0

M

− 
 
 
 − −

=  
 
 −
 
  

	 (6.80)

Figure 6.109(a) shows the response of the above coupling matrix.
By interchanging the feeding angles between the input and output, the coupling 

matrix can be changed and one can transfer both transmission zeros on the same 
side of the passband. Figure 6.109(b) shows the measured frequency response of 
the filter.

The subjects of cross-coupled and dielectric resonator filters are of tremen-
dous importance in modern microwave communication engineering. An excellent 
account of cross-coupled filter is available in the text by Cameron, Kudsia, and 
Mansour [62], while an excellent account of dielectric resonator filters is in Ian 
Hunter’s book [63]. 

Figure 6.100  Dual-mode (a) circular cavity filter, and (b) dielectric resonator filter.
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Figure 6.101   (a) Dual-mode dielectric resonator filter in a circular enclosure [60]. (Reprinted with 
permission from the IEEE.) (b) Frequency response of a four-pole dual-mode DR filter.
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Figure 6.102   (a) Field distribution in TE01δ mode dielectric resonator figure, (b) TE01δ  mode 
dielectric resonator excited by a probe and a wave port, and (c) top view of the dielectric resonator 
fed by a probe and terminated by a wave port [61]. (Reproduced courtesy of the Electromagnetics 
Academy.)
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Figure 6.105  Variation of fz with θ [61]. (Reproduced courtesy of the Electromagnetics Academy.)

Figure 6.104   (a) E-field distribution for a feeding angle of 270°, and (b) E-field distribution for a 
feeding angle of 180° [61]. (Reproduced courtesy of the Electromagnetics Academy.)

Figure 6.103  Response of the structure shown in Figure 6.101(b) for different feeding angles [61]. 
(Reproduced courtesy of the Electromagnetics Academy.)
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Figure 6.106  Top view of three 4-pole dielectric resonator filters [61]. (Reproduced courtesy of the 
Electromagnetics Academy.)

Figure 6.107  Topology of the source and load multiresonator couplings inline configuration filter 
[61]. (Reproduced courtesy of the Electromagnetics Academy.)

Figure 6.108  Simulation results for the three 4-pole dielectric resonator filters [61]. (Reproduced 
courtesy of the Electromagnetics Academy.)
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Appendix 6A  Slot Coupled Coaxial Combline Filter Design1

1.	 From [50].

Figure 6A.1  [50]. (Courtesy of Microwave Journal.)
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Figure 6A.2  [50]. (Courtesy of Microwave Journal.)
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Appendix 6B  A Step-By-Step Procedure for Waveguide Folded and 
Elliptic Filter Design

Filter Specifications:

Center frequency: f0 = 6.84 GHz

Bandwidth: ∆f = 0.320 GHz

Filter order: N= = 12

Passband return loss: RL = 24 dB

Waveguide dimensions: a = 34.89 mm, b = 8.45 mm

Locations of transmission zeros: fzL = 6.38 GHz, fzU = 7.38 GHz

Step 1: Designing the Basic Filter

Design a 12-pole waveguide Chebyshev filter using a suitable filter wizard. One can 
use WASP-NET or MICIAN or any other software that has optimization capability.

Figure 6B.1 shows the designed filter and the optimized frequency response.

Step 2: Bringing the Nonadjacent Resonators to Be Cross Coupled Close to 
Each Other

Fold the filter at the center iris (iris 7) as shown in Figure 6B.2(a) and optimize the 
frequency response. Figure 6B.2(b) shows the computed frequency response.

Step 3: Generating the Cross Coupling

Cut a square hole in the common wall between resonator 3 and 10, as shown in Fig-
ure 6B.3(a). Optimize the frequency response. Figure 6B.3(b) shows the optimized 
frequency response.

In the above example, E-plane folding with a negative cross coupling is used. 
A positive cross coupling results in a loss of stopband rejection, no transmission 
zeros. and a flatter group delay. Figure 6B.4(a) shows a WR137 cross-coupled filter 
with H-plane folding and positive cross coupling. All couplings, including the cross 
coupling, is inductive. Figure 6B.4(b) shows the frequency response of the filter.

The above method can be used with many other types of resonators like co-
axial, dielectric resonators, and planar transmission lines.
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Figure 6B.1  (a) A 12-pole Chebyshev filter (designed and optimized by WASP-NET), and (b) the 
optimized frequency response of the filter in (a). [Readers  may contact Protap Pramanick at protap-
pramanick2@comcast.net for the CAD files (STL, SAT, and STEP). The filters were optimized using 
WASP-NET software.]
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Figure 6B.2  (a) The folded Chebyshev filter, and (b) the optimized frequency response of the 
folded filter.
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Figure 6B.3  (a) The cross-coupled filter, and (b) the optimized and computed frequency response 
of the 12-pole elliptic filter.
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Figure 6B.4(a)  Eight--cavity waveguide linear phase filter, and (b) frequency response of filter 
shown in (a). (From [64]. Courtesy of Dr. Ralph Levy.)



380	 Band-Pass Filt

Appendix 6C  Design of Dielectric Resonator Filters
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C H A P T E R  7

Design of Multiplexers

7.1  Definition of A Multiplexer

By definition, a multiplexer is a device for separating the signals of different fre-
quencies present within the same system and directing them into subsidiary sys-
tems, or vice versa [1]. Multiplexers permit the transmission of a number of signals 
from one station to another without the introduction of appreciable cross-talk. 
They therefore constitute one of the main applications of filters. Unlike a duplexer, 
which is an electronic switch in the time domain, a multiplexer can be defined as a 
switch in the frequency domain. We briefly touched upon the issue of multiplexing 
in Chapter 1 when describing the significance of filters in microwave communica-
tion. Figure 7.1 shows the block diagram of a triplexer, which is a slightly different 
version of the diplexer shown in Figure 1.4 in Chapter 1. It uses three separate 
band-pass filters. The first one separates the 3.0–3.7 GHz band, the second one 
separates the 3.7–4.4 GHz band, and the third filter separates the 4.4–5.0 GHz 
band. At first glance, it may appear that the task of implementing the multiplexer 
or triplexer is simply completed by connecting the filters at a common point that 
will act as the input port of the resulting four-port device. However, in reality, it is 
not quite so simple. The art of multiplexer design depends on how the filters are 
connected together. Forming a simple common junction will result in undesired 
loading among the filters. This will give rise to interactions among the channels 
and seriously degrade the multiplexer’s performance. There are various traditional 
approaches towards multiplexer design [1], which have been followed over many 
decades. Modern computer-aided techniques have made many such approaches ob-
solete. Although using the filters in a multiplexer can be combined effectively by 
using brute force or systematic CAD optimization techniques, the basic multiplexer 
configurations are still very useful. Such configurations are 

Common junction with susceptance annulling network;
Cascaded directional filters;
Channel filters separated by isolators;
Manifold multiplexer.

In the following sections, we will briefly describe these approaches.
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7.2  Common Junction Multiplexer with Susceptance Annulling 
Network

For a contiguous multiplexer wherein the adjacent channels have attenuation 
characteristics that typically cross over at their 3-dB points, each channel filter is 
constructed from a singly terminated low-pass prototype and a shunt susceptance 
annulling network at the common junction, as schematically shown in Figure 7.2. 
The susceptance annulling network helps provide a nearly constant total input 
admittance, YTN. By design, YTN  is nearly real and approximates the genera-
tor output conductance, GB, across the entire operating band of the multiplexer. 
The use of singly terminated low-pass prototypes for the band-pass filters ensure 
that the real part of the input admittance of each filter has the same frequency 
response as the transmission characteristic. A dual of the above multiplexer is one 
that is series-connected, in which all channel filters are connected in series and a 
reactance annulling network is connected in series with the channel filters and the 
generator [1].

As mentioned earlier, each channel filter is designed from the corresponding 
singly terminated low-pass prototype. A singly terminated low-pass prototype is 
synthesized under the assumption that it is driven by a voltage source of zero series 
impedance, as shown in Figure 7.3. The power delivered to the load connected to 
the filter is given by

	
2

ReS kP E Y= ′
	 (7.1)

which implies that the real part of the input admittance of the filter has the same 
frequency response as that of the transfer function of the filter. Figure 7.4 shows 
typical Re kY ′ characteristics for low-pass Chebyshev prototype filters designed to be 
driven by zero impedance generators. The input admittances Yi  of the band-pass 

Figure 7.1   A three-channel multiplexer.
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channel filters in Figure 7.2 are the band-pass mappings of such low-pass prototype 
admittance characteristics.

In Figure 7.3, a low-pass prototype filter parameter 1ng +′′  is defined. Ideally, by 
definition, the parameter is equal to infinity. However, as shown in Figure 7.4, the 
value of 1ng +′′  or 1/ 1ng +′′  should be the geometric mean between the values of Re kY ′ at 
the top and bottom of the passband ripple. This admittance level for the low-pass 
prototype is analogous to the driving source impedance GB in Figure 7.2. 

The above approach to multiplexer design is basically applicable to contigu-
ous multiplexers where any two adjacent channels have their crossover frequency 
points at –3dB. However, the approach is applicable to noncontiguous multiplexers 
as well. Rhodes and Levy developed a more accurate theory and analytical equa-
tions for common junction multiplexer designs [2].

While the above approach is considerably analytical, a direct approach can be 
based on computer optimization. Let us consider a real-world triplexer design in 
order to establish the strength of modern CAD method for common junction mul-
tiplexer designs. The electrical specifications for the triplexer are as follows:

Channel 1

Passband 154 MHz – 174 MHz

Passband return loss: > –18 dB

Rejection between 400 MHz and 512 MHz: >20 dB

Figure 7.2  Shunt connected multiplexer (triplexer) with susceptance annulling network.
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Channel 2

Passband 400 MHz – 512 MHz

Passband return loss: > –18 dB

Rejection between 154 MHz and 174 MHz: >20 dB

Rejection between 760 MHz and 870 MHz: >20 dB

Channel 3

Passband 760 MHz – 870 MHz

Passband return loss: > –18 dB

Rejection between 400 MHz and 512 MHz: >20 dB

In the first step of designing the triplexer, we design three doubly terminated 
band-pass filters that meet the channel requirements and the rejection levels within 
the adjacent channels. Note that the filters are simple doubly terminated ones. 
Figure 7.5(a) shows that the triplexer has been formed by creating a common junc-
tion at the input ports of the individual filters. Figure 7.5(b) and Table 7.1 show 
the component values after the frequency response was optimized using a circuit 
simulator (Ansoft Designer [3]). Figure 7.6 shows the frequency response of the 
triplexer before and after optimization. 

7.3  Cascaded Directional Filter

A directional filter is a four-port device, as shown in Figure 7.7(a), with a theoreti-
cal insertion loss characteristic, as shown in Figure 7.7(b). It is assumed that the 
ports of the network are terminated in their characteristic impedances. The trans-
mission between ports 1 and 4 has a band-pass response, whereas the transmission 
between ports 1 and 2 has a complementary band-stop response. Ideally, no power 
emerges at port 3. The performance is obtained in an analogous way no matter 
which port is used as the input port. 

Figure 7.3  A singly terminated low-pass filter.
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The midband insertion loss, between the ports having the band-pass frequency 
response, of an actual directional filter employing resonators with a finite unloaded 
Q factor is the same as that of a two-port band-pass filter having the same fre-
quency response and using the resonators with same unloaded Q factor.

A directional filter can either be a single band-pass filter with dual-coupler type 
or a dual band-pass filter with dual hybrid-coupler type. Figure 7.8 shows the wave-
guide and planar transmission line versions of the first type of directional filter. The 
waveguide version (Figure 7.8(a)) [4] uses two TE10 mode supporting rectangular 
waveguides connected to a circularly polarized TE11 mode-based coupled circular 
cavity band-pass filter. At the center frequency of the passband of the band-pass 
filter, an incident TE10 mode signal on port 1 excites circularly polarized TE11 mode 
in the first cavity of the circular cavity band-pass filter. The circularly polarized 
TE11 mode signal in the last (nth) cavity launches a TE10 mode signal in the second 
rectangular waveguide. No power is transmitted to port 3. The frequency response 
between port 1 and port 4 is the same as that of the band-pass filter.

A complementary band reject response is obtained between port 1 and port 2. 
The available bandwidth of a directional filter depends on how the coupling slots 
are implemented. The band-pass filter can be designed using a filter design wizard 
and CAD optimization procedure [5]. It should be noted that the length of each 
circular cavity is nearly half a wavelength. Also, the coupling aperture between the 

Figure 7.4  Real part of the input admittance for Chebyshev filters of the type in Figure 7.3. 



390	 ����������������������Design of Multiplexers

end cavity and the rectangular waveguide uses offset apertures of special shapes in 
order to launch pure circularly polarized waves in the cylindrical cavities. However, 
offset simple rectangular or circular shaped irises can be used for coupling to rect-
angular input/output waveguides.  

The planar form of the directional filter (also called “ring type”), shown in 
Figure 7.8(b) [1], often needs tuning screws to minimize the effects of the reverse 
wave that are caused by the right angle bend discontinuities, coupled sections, and 
step discontinuities. However, if adequate fabrication accuracy that matches opti-
mum design as per modern CAD techniques is guaranteed, no tuning screw will be 
required after production. Figure 7.8(b) also presents the design equations for the 

Figure 7.5  Triplexer network before and after compensation and optimization. (Courtesy of Sandeep 
Palreddy.)
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filter. Once the even- and odd-mode characteristic impedances of the coupled sec-
tions are known, the corresponding line widths and the gaps can be obtained from 
(3.136)–(3.141) in Chapter 3 (depending on the type of transmission line used). It 
should be mentioned here that the ring type directional filters can also be realized 
using waveguides. 

Figure 7.9 shows the schematic diagram of a hybrid-coupled directional filter. 
Such a directional filter can be realized using any type of transmission line. It con-
sists of two identical band-pass filters and two identical 90°, –3 dB hybrid couplers 
[6]. Figure 7.10 shows the waveguide and planar circuit versions of a typical direc-
tional filter. In either structure, each filter can be separately tuned without affecting 

Figure 7.5  (continued)
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the other filter’s frequency response. Also, the dimensional tolerances of the hy-
brids are not so critical. In the case of waveguide, the branch-guide hybrid can be 
replaced by a short slot Riblet hybrid [7]. In case of a planar circuit, the branch-
guide hybrid can be replaced by 3 dB interdigital couplers [8]. Also, the band-pass 
filters can be replaced by any other suitable form of planar band-pass filter. Figure 
7.11 shows a block diagram of a cascaded directional filter-based multiplexer. Usu-
ally, the loading effects on any filter from the adjacent ones are minimal. However, 
using modern CAD techniques, such effects can always be minimized.

In a hybrid-coupled directional filter approach to multiplexing, one half of the 
input power passes through each filter. This is extremely advantageous for high-
power applications because the filter specifications can be more relaxed. Also, due 
to minimal interactions between adjacent filters, a modular approach can be used 
towards realization of the overall multiplexer and additional channel filters can be 
added easily at any time. 

Multiplexers based on conventional directional filter are reasonably compact. 
However, those consisting of hybrid-coupled directional filters are bulky and heavy 
for obvious reasons. Since symmetry is a key requirement for maintaining phase 
balance between different paths, the multiplexer must be fabricated with tight tol-
erances in order to minimize phase deviation. 

 7.4  Circulator Based Multiplexer

A circulator is a passive multiport device used in modern RF and microwave equip-
ment. By using circulators the stability, performance, and reliability of a system 
can be improved and often enabling better and cheaper solutions than other alter-
natives. In addition, in certain applications, the use of circulators is a must. It is 
defined as a device with three or more ports, where power is transferred from one 
port to another in a prescribed order. That means for a three-port circulator (shown 
in Figure 7.12 [9]), power entering port 1 leaves port 2, port 3 is decoupled; power 

Table 7.1  Component Values
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entering port 2 leaves port 3, port 1 is decoupled; and power entering port 3 leaves 
port 1, port 2 is decoupled. 

The operation of a circulator is based on the unique properties of ferrite mate-
rials. The reader is referred to [10] for a complete understanding of circulators. The 
junction circulator is the most common circulator. It is realized in waveguide and 

Figure 7.6   Input return loss of the triplexer before the addition of susceptance annulling network and op-
timization. (Courtesy of Sandeep Palreddy.)
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stripline forms. The stripline form of a junction usually has coaxial line interfaces. 
Figure 7.13 shows the circuit symbol for a three-port junction circulator. Figure 
7.14 shows the schematic diagram of a circulator-coupled multiplexer. In terms of 
amenability to modular integration and assembly, the unidirectional property of a 
circulator provides the same advantages as the directional filter or hybrid-coupled 
directional filter approach. However, isolators are inherently lossy. 

Consequently, the multiplexer has higher insertion loss. While the first channel 
suffers the combined insertion loss from one circulator and the filter, the last chan-
nel suffers the insertion loss from all of the circulators and the filter. Figure 7.15 
shows a practically realized isolator-based, space-qualified multiplexer [11]. Figure 
7.16 shows how an extra circulator can be used to put the transmitter and receiver 
multiplexers on the same antenna [12]. The designer must bear in mind that the 
transmitter and the receiver multiplexers need to fulfill stringent requirements for 
intermodulation. 

 7.5  Manifold Multiplexer

In a manifold multiplexer, each filter channel is attached to a manifold transmis-
sion line using T-junctions. Figure 7.17 shows the schematic diagram of a manifold 
multiplexer. The direct connection of all filters to a single manifold via several T-
junctions makes the performance of each channel highly dependent on the perfor-
mance of the rest of the channels [13]. This makes the entire system very complex. 
Therefore, a heavy amount of design optimization is required in order to achieve 
the optimum performance of a multiplexer. Also, unlike the directional filter-
based approach and the circulator-based approach, the addition of more channels 
to an already optimized manifold multiplexer requires a redesign. However, such 

Figure 7.7  (a) Block diagram of a directional filter, and (b) frequency response of a directional filter.
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Figure 7.8  (a) Waveguide directional filter [4]. (b) Planar form of directional filter [1].

Figure 7.9  Hybrid-coupled directional filter schematic.
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shortcomings outweigh the advantages of manifold multiplexers, especially in sat-
ellite communication systems. Such multiplexers have the smallest weight because 
they are devoid of extra filters and hybrids as in directional filters or circulators, 
containing ferrites and magnets, in a circulator coupled multiplexer. In addition, 
manifold multiplexers offer the lowest insertion loss. That is extremely important 
in satellite systems where the available dc power is limited. 

Over the past several decades, manifold multiplexers were designed using vari-
ous semianalytical and experimental methods. An excellent account of such meth-
ods have been recounted by Matthaei, Young, and Jones [1], various papers [14], 

Figure 7.10  (a) Waveguide version of a hybrid-coupled directional filter. (b) Planar circuit version 
of a hybrid-coupled directional filter.

Figure 7.11  Multiplexer based on cascaded directional filter approach.
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and a review article by Cameron and Yu [15]. Today, the most common and ef-
fective method for the design and optimization of a manifold multiplexer is based 

Figure 7.12  Power flow in circulators. (Courtesy of Douglas F. Carlberg, M2Global, San Antonio, TX.)

Figure 7.13  Symbol for a three-port circulator.

Figure 7.14  Circulator-coupled multiplexer.
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on computer optimization [16–18]. While most of the earlier methods started with 
singly terminated channel filters, modern methods start with doubly terminated 
filters. 

The methods have three basic steps: 

1.	 Designs of channel filters as doubly terminated filters;
2.	 Determination of locations of a filter from the corresponding T-junction on 

the manifold and the spacings between two successive T-junctions; 
3.	 Full electromagnetic analysis-based optimization of the scattering matrix 

of the entire structure. 

As in computer aided optimization, the initial guess of the T-junction spacings and 
the locations of the channel filters play a very significant role in the convergence of 
the optimization procedure. Morini, Rozzi, and Morelli [19] presented very useful 
analytical method and closed-form equations for the initial guess of the T-junction 
spacings and filter locations. The method is described in the following sections.

7.5.1  Diplexer Design

Let S be the scattering matrix of a symmetrical T-junction J shown in Figure 7.18. 
At a given frequency, f, it is always possible to minimize the reflection coef-

ficient of the two-port junction formed by terminating one of the ports of the re-
ciprocal and lossless three-port (say, port 2) by a load jX, provided that the load is 
positioned at a distance of

Figure 7.15  Three-channel circulator-based space qualified multiplexer. (From [11].)
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where ejψ is the reflection phase of the reactive load, β is the propagation constant 
of the feed lines, and

	
2 2 2

12 tan
b a b c

c a
f − − + + −

=
−

	 (7.3)
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Figure 7.16  Circulator-based transmitter and receiver multiplexers on the same antenna. (From 
[12].)
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Figure 7.17  Schematic of a manifold multiplexer. (From [13].)

Figure 7.18  Transverse section of T-junction.

Figure 7.19   Layout of a T-manifold multiplexer.



 7.5  Manifold Multiplexer	 401

where iij
ii iiS a e ϕ=  are the diagonal terms of the scattering matrix of the three-port 

junction and sje ϕ  is the determinant of the matrix computed at frequency, f. The cor-
responding value of the minimum reflection coefficient is 
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Note that the minimum reflection coefficient ρmin is zero only when a11 = a33. The 
next step is to realize a diplexer using such a T-junction and two given filters F1 
and F2. The approach to the design is based on the fact that the out-of-band input 
impedance of a filter acts as an almost reactive load. Equation (7.2) gives the loca-
tions l2 and l2 of the filters F1 and F2, respectively, with the phase ψ appearing in the 
equation chosen as ( )1

11 2
FS f∠  and ( )2

11 1
FS f∠ , respectively. Since the required T-junction 

scattering matrix conditions are fulfilled at the center frequencies of the two filters, 
the diplexing effects of the junction degrades near the band edges of the filters. 
However, the frequency response remains acceptable for all practical purposes. 

 7.5.2  Multiplexer Design

Multiplexer design is an extension of the diplexer design approach. Let us consider 
an N channel multiplexer consisting of N band-pass filters Fi (i = 1,2,...,N) cen-
tered at fi  such that fi < fi + 1. The filters are connected to a cascade of N identical 

Figure 7.20   (a) The common port reflection response of an unoptimized, nine-channel, noncon-
tiguous multiplexer, employing septum filters and E-plane T-junction manifold. The continuous lines 
are according to the present method. The dashed lines are obtained using the method described 
in [20]. (Reprinted with permission from the IEEE.) (b) The common port reflection response of an 
unoptimized, six-channel, contiguous multiplexer, employing septum filters and E-plane T-junction 
manifold. The continuous lines are according to the present method. The dashed lines are obtained 
using the method described in [20]. (Reprinted with permission from the IEEE.)  
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T-junctions of scattering matrix ST, as shown in Figure 7.19. The distances lk of the 
filters from the junction and the separations lsk of the T-junctions are calculated as 
follows:

•• lk is computed so that a matched two-port is obtained between ports 3 and 
2 of the kth junction at frequency f *(the arithmetic mean of the center 
frequencies of all the channels), when port 1 is closed on Fk. In that case, 

( )*
11

kFje S fψ = .

•• lsk is the distance between port 3 of the kth junction and the reactive load jX 
that minimizes the reflection of the resulting two-port at frequency fk for k 
> 1, jX is the input impedance seen to the right of port 2 of (k–1)th junction 
calculated at frequency fk; for k = 1, jX = 0, being the input impedance of a 
short circuit. 

The above approach disregards multimode interactions among the involved T-junc-
tion in manifold multiplexer. Consequently, the designer has to carry out a multi-
mode analysis-based optimization of the entire multiplexer with the initial values 
obtained by that method. 

Figure 7.20 shows computed responses of a noncontiguous and contiguous 
multiplexer designed using this method [20]. In contiguous multiplexers the inter-
actions among the constituent filters are more pronounced, and overall optimiza-
tion is a must in all cases. Figure 7.21 shows a fabricated 5-channel waveguide 
multiplexer for TV broadcasting. 
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	 cross section, 47
	 discontinuities, 54–59
	 discontinuity illustration, 58
	 field pattern of TEM mode, 49
	 formulas for derivatives, 51
	 gap discontinuity, 58, 59
	 general equation for attenuation, 50–52
	 loss calculation, 51
	 maximum power-handling capability of, 

52–54, 55
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Coaxial lines (continued)
	 order of cutoff frequencies, 50
	 overall attenuation, 52
	 Q-factor of, 46–50
	 rectangular, 59–61
	 standard, attenuation in, 53
	 step discontinuity, 56, 58
	 T-junctions, 58, 59
	 transverse field patterns, 49
	 See also Transmission lines
Combline filters
	 compensating capacitance, 305
	 defined, 303
	 design equations, 303–8
	 design example, 308–10
	 dimensions, 310
	 equivalent network, 306
	 frequency response, 309
	 practical schematic, 307
	 Q-factor, 309
	 quarter-wavelength resonator, 308
	 schematic, 306
	 size, 306
	 slot-coupled coaxial-resonator-based, 309, 

373–74
	 specifications, 308
	 square-rod, 308–10
	 stopband, 306
	 terminating capacitors, 305
	 See also Band-pass filters
Commensurate line filters
	 analytical formulas, 213
	 defined, 213
	 line length and impedance effects, 212–33
	 transfer function, 213
Complex frequency, 5–6
Corrugated waveguide harmonic reject filter
	 frequency response, 229
	 longitudinal slots, 228–29
	 use of, 228
Coupled microstrip line
	 characteristic impedance, 95–96
	 cross section, 92
	 defined, 92
	 frequency dependence, 93–95
	 full-wave analysis programs, 96

	 static odd-mode effective dielectric constant, 
93

	 See also Microstrip lines
Coupled resonator filters
	 circuit elements, 347
	 computed reflection group delays, 349
	 reflection group delay responses, 347, 348
	 reflection group delays, 348
	 unified approach to tuning, 346–49
Coupled slablines
	 analysis equations, 86
	 defined, 85
	 illustrated, 85
	 optimization scheme, 86–87
Coupled striplines
	 analysis curves, 77
	 attenuation in, 78–79
	 broadside, 79–85
	 edge, 74–77
	 synthesis equations, 77–78
	 See also Striplines
Coupling coefficient, 31
Coupling matrix, 128
Cross-coupled filters
	 hairpin-line, 339
	 with independently controlled transmission 

zeros, 345–46
	 with planar transmission lines, 338–44
	 purpose of, 357
Cross-coupled low-pass prototype
	 conventional method comparison, 193
	 cost function, 191
	 coupling coefficients, 191
	 coupling values, 190
	 defined, 189
	 derivative-based optimization, 191–92
	 generalized network, 191
	 group delay, 192
	 topology matrix, 191
	 two-port scattering parameters, 191
Cross-coupled planar filters
	 admittance slope parameter, 339–41
	 coupled modified hairpin resonators, 340
	 coupling coefficient, 341, 342
	 coupling matrix, 343
	 defined, 338–39
	 design method, 339
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	 design steps for, 343–44
	 frequency responses, 344
	 mixed coupled modified hairpin resonator 

configurations, 340
	 modified hairpin-line, 339
	 tapped input/output locations, 343
	 tap-point location, 341
Cross-coupled resonator filters
	 advantages of, 320
	 basic resonator orientation, 328
	 Chebyshev, 321
	 circuit arrangement, 329
	 computed frequency response, 325, 326, 

330
	 coupling matrix, 320, 322, 323, 324, 327
	 coupling topology, 325, 326
	 coupling values, 327
	 curve fitting, 329
	 design, 319–30
	 design with dual-mode resonators, 330–34
	 dual-resonator orientation, 328
	 E-plane folded, 337
	 equivalent network, 326–27
	 frequency response, 323, 331
	 generalized network, 320
	 general multicoupled network, 325
	 H-plane folded, 336
	 interresonator couplings, 328
	 iris opening and, 328
	 location of irises, 329
	 normalized frequency, 320
	 physical structure, 322
	 quintuplet-coupling configurations, 324
	 scattering parameters, 321
	 specifications, 326–27
	 See also Band-pass filters
Current
	 backward, 16
	 defined, 14
	 equivalent, 13–17
Cutoff frequency
	 Butterworth filters, 157
	 Chebyshev filters, 163, 209
	 circular waveguides, 110
	 coaxial lines, 49, 50
	 defined, 1

	 electrical length of transmission line at, 215
	 elliptic filters, 169
	 error, 218
	 fundamental mode, 16, 137
	 higher-order mode, 60
	 high-pass filters, 234, 240
	 illustrated, 2
	 lowest-order TE mode, 91
	 propagation constant and, 109
	 quasi-distributed element TEM filters, 230
	 striplines and, 62
	 waveguide high-pass filter, 242
	 waveguides, 129, 228
Cutoff wavelength
	 circular waveguides, 110
	 fundamental mode, 137
	 striplines, 63

D

Darlington’s method
	 driving-point impedance, 201
	 realization, 203
	 realized network, 204
	 steps, 200
	 synthesis, 201–6
	 z-parameters, 203
Derating factor, 119
Dielectric resonator filters
	 computed frequency response, 362
	 configurations, 359–60
	 coupled pair of resonators, 359
	 coupling curve, 355, 357
	 coupling matrix, 368
	 designed filter, 361
	 design of, 353–68, 380–83
	 dual-mode, 353, 357, 363, 364
	 effect of finite Q, 350
	 E-field distribution, 366
	 equations for resonance frequencies, 353
	 feeding angles, 363
	 field distribution, 365
	 four-pole, 362, 367
	 horizontally oriented puck, 354
	 introduction to, 349–51
	 isolated circular cylindrical resonators, 350
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Dielectric resonator filters (continued)
	 measured response, 362
	 in microwave communication engineering, 

363
	 modes and mode nomenclature, 351–52
	 multiresonator couplings, 367
	 one-port simulation configuration, 360
	 principle modes, 352
	 realization of, 355
	 resonance frequencies from simulation, 361
	 resonance frequency adjustment, 355
	 resonant frequencies, 352–53
	 resonator in below-cutoff metallic enclosure, 

359
	 resonator modes, 351–68
	 simulation of resonance, 356
	 types of, 353
	 vertically oriented puck, 354
	 See also Band-pass filters
Diplexers
	 block diagram, 4
	 defined, 2
	 design, 398–401
	 See also Multiplexers
Directional couplers
	 insertion loss, 31
	 primary line, 30
	 reflection meter, 32
	 scattering matrix, 32
	 schematic diagram, 30
Discontinuities
	 bend discontinuity, 73–74
	 circular hole discontinuity, 71
	 coaxial lines, 54–59
	 E-plane, 135–37
	 gap discontinuity, 70–71
	 H-plane, 133–35, 138
	 inhomogeneous transmission lines, 103–5
	 iris, 131
	 microstrip and suspended stripline, 103–5
	 open-end discontinuity, 71–72
	 slot, 222
	 step discontinuity, 58, 69–70, 123
	 striplines, 67–74
	 three-dimensional, 137–41
	 T-junction discontinuity, 72–73
	 in waveguides, 120–22

Distributed circuits
	 band-stop filter design, 243–63
	 commensurate line filters, 212–33
	 cutoff frequency error, 218
	 design example, 217–19
	 lumped elements and, 207–10
	 quasi-distributed element TEM filters, 

230–33
	 theory of, 207–63
	 TLE/UE and Kuroda identity, 210–12
Distributed elements
	 categories, 214
	 equivalence of lumped elements, 207–10
	 input impedance, 207
Diversity, 31
Driving-point impedances
	 Darlington synthesis, 201
	 impedance inverter, 179
	 realizable, 10–11
Dual-mode circular cavity filter, 357, 363
Dual-mode cross-coupled filters
	 circular cavity, 331
	 coupling coefficient, 332–34
	 design dimensions, 334, 335
	 equivalent circuit, 332
	 K-inverter values, 331–32
	 McDonald’s method, 334
	 operation of, 330
	 optimization-based iteration scheme, 332, 

333
	 tilted iris, 332
	 See also Cross-coupled resonator filters
Dual-mode dielectric resonator filters
	 in applications, 353
	 in circular enclosure, 364
	 dual-mode circular cavity filter and, 357
	 illustrated, 363
Duplexers, 119

E

Edge-coupled striplines, 74–77
Edge-coupled suspended microstrip lines, 

100–102
Edge parallel-coupled band-pass filters
	 defined, 277
	 design equations, 283–84
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	 drawback, 284
	 within enclosure, 282
	 equivalent network, 280
	 first coupled pair of lines, 277
	 illustrated, 280
	 input file for, 281–82
	 intermediate coupled pair of lines, 278
	 outermost coupled pair of lines, 279
	 planar, 280
	 stepped impedance, 283
	 See also Band-pass filters
Electrical discontinuity, 44–45
Electrical filters, 11
Elliptic filters
	 12-pole, 378
	 approximation, 168–75
	 cutoff frequency, 169
	 design specifications, 172
	 discrimination parameter, 169–70
	 frequency response, 170, 175
	 input impedance, 174
	 input reflection coefficient, 174
	 inverter-coupled prototype for, 184
	 normalized transducer power gain, 173
	 normalized transfer function, 169
	 order of, 172–75
	 prototype, 197, 230
	 synthesis of, 169
	 synthesized, 174
	 theory of approximation, 169–72
	 transfer function, 169
	 See also Low-pass filters
Elliptic integral function, 171
E-plane folded cross-coupled resonator filters, 

337
E-plane iris-coupled stub-loaded band-stop 

filter, 261
E-plane waveguide discontinuities, 135–37
Equal ripple filter, 215
Equivalent current, 13–17
Equivalent voltage, 13–17
Error function, 194
Evanescent-mode waveguide band-pass filters
	 advantages of, 315–16
	 computed frequency response, 318, 319
	 conventional, 319

	 defined, 314
	 double-ridge, 317
	 equivalent circuit, 318
	 interposed inductive strips, 319
	 single-mode approach, 318
	 single-ridge, 317
	 stopband width, 318
	 See also Band-pass filters
Extracted pole low-pass filters
	 circuit configuration, 198
	 frequency response, 198
	 network of, 273
	 response, 272

F

Filters
	 cascaded directional, 388–92
	 combline, 303–10
	 commensurate line, 212–33
	 corrugated waveguide harmonic reject, 228, 

229
	 cutoff frequency, 1
	 defined, 1
	 electrical, 11
	 fabrication of, xi
	 noncommensurate line, 213
	 quasi-distributed element TEM, 230–33
	 types of, 1
	 waffle-iron, 229
	 See also Band-pass filters; Band-stop filters; 

High-pass filters; Low-pass filters
Finite element modal expansion method
	 E-plane waveguide discontinuities, 135–37
	 H-plane waveguide discontinuities, 133–35
First Cauer form, 152, 154–55
FMINCON, 196
Folded resonator cross-coupled filters
	 defined, 334
	 design steps for, 334–37
	 E-plane, 337
	 frequency response, 338
	 H-plane, 336
	 See also Cross-coupled resonator filters
Four-pole band-pass filters, 362
Frequency scaling, 230–31
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G

Gain-bandwidth integral restriction, 4
Gap-coupled transmission line band-pass filters, 

275–77, 278
Gap discontinuities, 58, 59, 70–71
Generalized Chebyshev low-pass filters
	 conservation of power, 176
	 degrees of freedom, 175
	 frequency response, 179
	 operation theory, 175
	 recursive procedure, 177–78
Generators, 147
Group delay
	 coupled resonator filters, 347–49
	 cross-coupled low-pass prototype, 192

H

Hairpin-line filter
	 cross-coupled, 339
	 design equations, 285–86
	 illustrated, 284
	 input and output connections, 286
	 interdigital filter, 289
	 normalized capacitance matrix, 286
	 resonator degeneration, 290
	 tapered, 288
	 tap-point location, 341
	 WAVECON input file, 287–88
	 See also Band-pass filters
Heat transfer, power equation for, 118
Helmholtz equations, 108, 135, 136
High-pass filters, 240
	 characteristic of, 2
	 coaxial line, 236
	 cutoff frequency, 234
	 design, 233–43
	 homogeneous distributed, 238
	 Levy’s procedure for, 237–41
	 low-pass transformation, 233–34, 235
	 quasi-lumped element, 234–37
	 realizable response, 3
	 waveguide design, 242–43
Hollow metallic waveguides
	 cutoff wavenumber, 109
	 defined, 105

	 electric and magnetic field components, 109
	 illustrated, 106
	 TE and TM mode fields, 107, 111
	 See also Waveguides
Homogeneous distributed high-pass filters, 238
H-plane folded cross-coupled resonator filters, 

336
H-plane waveguide discontinuities, 133–35
Hurwitz polynomial, 157, 201
Hybrid-coupled directional filter, 391, 392, 

395, 396

I

Impedance inverters
	 ABCD matrix, 187
	 absorption of negative elements, 188
	 compensated transmission line, 187
	 concept of, 178–89
	 coupled elliptic low-pass filter, 184
	 driving-point impedance, 179
	 extraction of, 180
	 extraction of second, 181
	 input impedance, 179
	 mixture with UEs, 219–29
	 Nth-order, 181–82
	 physical realization of, 186–89
	 schematic diagram, 179
	 terminated by load, 179
	 values, 223, 227
	 waveguide iris discontinuity, 189
Impedance matching networks, 4–5
Impedance matrix, 19
Impedances
	 driving-point, 10–11, 179, 201
	 input, 174, 179, 201, 207, 208
	 See also Characteristic impedance
Impedance scaling, 230
Inhomogeneous coupled line section, 238, 239
Inhomogeneous transmission lines
	 broadside-coupled suspended striplines, 

102–3
	 coupled microstrip line, 92–96
	 defined, 87
	 discontinuities, 103–5
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	 edge-coupled suspended microstrip lines, 
100–102

	 illustrated, 87
	 shielded microstrip line, 88–92
	 shielded suspended microstrip line, 98–100
	 suspended microstrip line, 96–98
	 See also Transmission lines
Input admittance, 182
Input impedance
	 distributed elements, 207
	 elliptic low-pass filter, 174
	 impedance inverter, 179
	 one-port network, 201
	 open circuit transmission line, 208
Insertion loss
	 directional couplers, 31
	 method, 145–48
	 scattering matrix and, 28–30
Interdigital filters
	 capacitively loaded, 292–95
	 configurations, 291
	 defined, 289
	 equivalent circuit, 292
	 microstrip, 297–303
	 slabline, WAVECON input file, 293–94
	 tap point location, 291
	 See also Band-pass filters
Iris analysis, 130–32
Iris-coupled waveguide band-pass filters, 312

J

Jacobian sine elliptic function, 171

K

K-inverters, 187, 221, 226, 271
Kuroda’s identity, 211–12

L

Ladder networks, 159, 167
	 realization of, 178
	 synthesizing from input admittance, 182
LaTourrette, Peter, 237
Levy’s procedure, 237–41
	 equivalent circuit, 241
	 inhomogeneous coupled line section, 238, 

239

	 step-by-step, 240
Linear time-invariant networks, 6–8
Lossless nonreciprocal networks, 27
Low-pass filters
	 band-stop filter transformation, 243–51
	 as basic building block, 145
	 Belevitch matrix, 148–49
	 Butterworth, 150–61
	 Cauer synthesis, 153–57
	 Chebyshev, 161–68, 175–78
	 design, 145–97
	 distributed prototype ridged waveguide, 222
	 elliptic, 168–75
	 extracted pole, 198
	 general response, 234
	 to high-pass transformation, 233–34, 235
	 ideal and distributed response comparison, 

214
	 impedance inverter, 178–89
	 insertion loss method of design, 145–48
	 midseries configuration, 204, 205
	 overview, 145
	 realizable response, 3
	 ridged waveguide, 221–23
	 singly terminated, 388
	 stripline stepped impedance, 217
	 tapered corrugated, 224, 225–27
	 transformation to band-pass filter, 267, 270, 

271
Low-pass prototypes
	 band-pass filter evolution from, 269
	 Chebyshev filter, 230
	 Chebyshev response, 197
	 comparison, 196
	 with cross-coupled networks, 189–93
	 elliptic filter, 230
	 elliptic response, 197
	 frequency responses, 197
	 midshunt, 205, 206
	 with mixture of UEs and impedance 

inverters, 219–29
	 with optimization and MLS, 193–98
	 UE, 217
Lumped element Chebyshev low-pass filters, 

209
Lumped element inverters, 187, 188
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M

Manifold multiplexers
	 defined, 394
	 design of, 396
	 diplexer design, 398–401
	 five-channel, for broadcast TV, 402
	 minimum reflection coefficient, 401
	 multiplexer design, 401–2
	 optimization, 397–98
	 port reflection response, 401
	 schematic, 400
	 shortcomings and advantages, 396
	 T, layout, 400
	 T-junction, 400
	 See also Multiplexers
MATLAB toolbox, 196
Maximum power-handling capability
	 of circular waveguides, 119–20
	 of coaxial lines, 52–54, 55
	 of waveguides, 116–19
McDonald’s method, 334
Method of least squares (MLS)
	 for adaptive filters, 193
	 cascaded connection of shunt and series 

units, 196
	 error function, 194
	 features, 193
	 flowchart, 195, 196
	 in low-pass prototypes, 193–98
	 optimization, 196
Microstrip interdigital filter
	 arrangements of coupled pair of resonators, 

299
	 computed frequency response, 302
	 conclusions, 302–3
	 coupling as function of resonator spacing, 

300
	 final layout, 302
	 illustrated, 298
	 low-pass prototype parameters, 298–300
	 resonator coupling coefficient, 298
	 resonator spacings, 298–300
	 specifications, 297
	 structure for Q determination, 301
	 tap-point locations, 300–303
Microstrip lines

	 coupled, 92–96
	 edge-coupled suspended, 100–102
	 shielded, 88–92
	 shielded suspended, 98–100
	 suspended, 96–98
Microwave filters. See Filters
Microwave network theory
	 ABCD matrix, 34–40
	 equivalent voltage and current, 13–17
	 impedance and admittance matrices, 17–19
	 introduction to, 13
	 measurement of scattering matrix, 30–34
	 scattering matrix, 19–30
Microwave transmission lines. See 

Transmission lines
Midseries network, 204, 205
Midshunt low-pass prototype, 205, 206
Mixed UE inverter, 221, 222
Mode matching method
	 analysis of an iris, 130–32
	 coupling matrix, 128
	 offset step junction, 132, 133
	 TE and TM mode cutoff frequencies and, 

128
	 waveguide discontinuities and, 124–32
Multiple-coupled resonator filter
	 coupling coefficient, 297
	 generalized network, 296
	 impedance matrix, 296
	 network equation, 295
	 scattering parameters, 296–97
Multiplexers
	 cascaded directional filter, 388–92
	 circulator based, 392–94
	 configurations, 385
	 contiguous, 386
	 defined, 2, 385
	 design of, 385–402
	 directional filter approach, 396
	 manifold, 394–402
	 shunt connected, 387
	 with susceptance annulling network, 386–88
Multiport networks
	 ABCD matrix, 35
	 passive components, 11
	 scattering matrix of, 21–22
	 termination by different impedances, 22
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Multiresonator couplings inline configuration 
filter, 367

N

Network analyzers, 34
Network characteristics, determination of, 13
Noncommensurate line filters, 213
Nonsinusoidal voltages, 6–8
Normalized ABCD matrix, 37–40
N-port network, 17
Nth-order inverter-coupled Butterworth low-

pass filter, 181–82
Nth-order inverter-coupled Chebyshev filters, 

182–83
Numerical electromagnetic (EM) analysis, 57

O

Offset step junction, 132, 133
One-port networks
	 illustrated, 21
	 input impedance, 201
	 parameters, 9
Open circuit transmission line
	 characteristic impedance, 208
	 input impedance, 208
Open-end discontinuity, 71–72
Optimization
	 dual-mode cross-coupled filters, 332–33
	 in low-pass prototypes, 193–98
	 manifold multiplexers, 397–98
	 method of least squares (MLS), 196
Organization, this book, xi–xiii

P

Paley-Wiener criterion, 2, 5
Parallel-coupled lines
	 attenuation in, 78–79
	 broadside-coupled striplines, 79–85
	 coupled-slab lines, 85–87
	 defined, 74
	 edge-coupled striplines, 74–77
	 synthesis equations, 77–78
	 See also Transmission lines
Passive networks, 8
Peak power handling capability, 41

Planar edge parallel-coupled band-pass filters, 
280

Propagation constant
	 striplines, 65
	 transmission lines, 41, 42
	 waveguides, 109

Q

Quadruplexers, 2
Quasi-distributed element TEM filters
	 defined, 230
	 frequency scaling, 230–31
	 impedance scaling, 230
	 shunt capacitances, 231
	 WAVECON analysis and design file, 232
	 WAVECON layout and frequency response, 

233
Quasi-lumped element high-pass filters
	 circular disk capacitor, 234–37
	 coaxial line, 236
	 defined, 234
	 impedance and admittance inverters, 236

R

Reciprocal networks
	 defined, 8
	 two-port, 35
Rectangular coaxial lines
	 characteristic impedance, 60
	 cross section, 59
	 higher-order modes in, 60
	 square, 60–61
	 use of, 59
	 See also Coaxial lines
Rectangular waveguides
	 analytical equations, 113
	 asymmetric step discontinuity, 123
	 attenuation in, 113
	 discontinuities, 120–22
	 EH-plane step junction, 124
	 E-plane multiport, 135
	 frequency dependence of Q-factor in, 114
	 high-pass filters, 243
	 H-plane iris discontinuity, 187
	 H-plane multiport, 134
	 illustrated, 106
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Rectangular waveguides (continued)
	 maximum power-handling capability, 116
	 mode sequence in, 107
	 TE and TM mode fields, 107
	 three-dimensional discontinuities, 137–41
	 See also Waveguides
Reference planes shift
	 illustrated, 25
	 scattering matrix transformation due to, 

24–27
Reflection coefficient
	 band-stop filters, 252
	 defined, 21
	 elliptic low-pass filter, 174
	 of one-port device, 33
	 open-end discontinuity, 72
	 ridged waveguide low-pass filter, 223
Reflection meters, 32
RF filters. See Filters
Ridged waveguide low-pass filter
	 ABCD matrix, 221
	 distributed prototype, 222
	 frequency response, 224
	 impedance inverter values, 223
	 reflection coefficient, 223
	 slot discontinuity, 222
	 Ridge waveguides, 137–40

S

Scalar network analyzers, 34
Scattering matrix, 19–30
	 capacitive iris, 227
	 of common networks, 26
	 defined, 19–24
	 directional couplers, 32
	 elements, 27
	 equivalent T-network and, 187
	 insertion loss concept and, 28–30
	 of loss-less passive two-port network, 

148–49
	 of lossless three-port network, 28
	 measurement of, 30–34
	 of multiport networks, 21–22
	 reference plane shift and, 24–27
	 T-junctions, 73
	 transformation of, 24–27

	 usefulness of, 28
Second Cauer form, 152, 156
Series stub-loaded band-stop filters, 257
Shielded microstrip line
	 analysis equations, 92
	 characteristic impedance, 89, 91
	 defined, 88
	 effective dielectric constant, 88
	 frequency dispersion, 90
	 homogeneous equivalent, 88
	 suspended, 98–100
	 See also Microstrip lines
Shunt inductor, 148
Shunt series resonant circuits, 231, 232
Single-conductor closed transmission lines
	 circular waveguides, 112–16
	 discontinuities, 120
	 finite element modal expansion method, 

133–37
	 hollow metallic waveguides, 105–12
	 maximum power-handling capability, 116
	 mode matching method, 124–32
	 three-dimensional discontinuity, 137–41
	 waveguide asymmetric H-plane step, 122–24
	 waveguide discontinuity analysis, 132–33
	 See also Transmission lines
Sinusoidal voltage, 6–8
Slot-coupled coaxial-resonator-based combline 

filter, 309, 373–74
Slot discontinuity, 222
Square coaxial line, 60–61
Step discontinuity, 58, 69–70, 123
Stepped impedance edge parallel-coupled band-

pass filters, 283
Stripline low-pass filter, 232
Striplines, 103–4
	 attenuation constant, 66–67
	 balanced, 61, 62–64
	 basic configuration, 61–62
	 bend discontinuity, 73–74
	 broadside-coupled suspended, 102–3
	 characteristic impedance, 62–64
	 circular hole discontinuity, 71
	 cutoff wavelength, 63
	 defined, 61
	 discontinuities, 67–74
	 edge-coupled, 74–77
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	 field configuration, 62
	 gap discontinuity, 70–71
	 low-pass cascaded UE filter, 218
	 modes in, 62
	 open-end discontinuity, 71–72
	 parallel plate equivalent, 69
	 power-handling capability, 67
	 propagation constant, 65
	 step discontinuity, 69–70
	 stepped impedance low-pass filter, 217
	 synthesis of, 65–66
	 T-junction discontinuity, 72–73
	 unbalanced, 64–65
	 unloaded Q-factor, 66–67
	 See also Transmission lines
Stub-loaded band-stop filters
	 bandwidth parameter, 254
	 defined, 253
	 design parameters, 253
	 E-plane iris-coupled, 261
	 illustrated, 253
	 series, 257
	 shunt, 255
	 WAVECON input file, 255
	 WAVECON output file, 256
	 wide stopband shunt, 254
Suspended microstrip line
	 characteristic impedance, 96–97
	 defined, 96
	 discontinuities, 103–4
	 open, 97
	 shielded, 98–100
	 See also Microstrip lines
Suspended striplines, broadside-coupled, 102–3

T

Tapered corrugated low-pass filters
	 defined, 224
	 equivalent network, 225
	 illustrated, 224
	 impedances of distributed elements, 225–26
	 performance parameters, 224–25
	 specifications and dimensions, 228
	 tapering profiles, 227
Tap-point locations, 300–303

Three-dimensional discontinuities, in 
rectangular waveguide, 137–41

Time delay
	 Butterworth filter, 161
	 Chebyshev filter, 168
T-junction discontinuity, 72–73
T-junctions, 58, 59, 400
Transfer function
	 Chebyshev low-pass filters, 166
	 commensurate line filters, 213
	 elliptic low-pass filters, 169
Transmission line elements (TLEs)
	 defined, 210
	 electrical lengths, 213
Transmission line equivalent circuit, 209
Transmission lines, 41–141
	 characteristic impedance, 15
	 with electrical discontinuity, 44–45
	 equations, 41–44
	 frequency dependence of attenuation, 141
	 illustrated, 14
	 inhomogeneous, 87–105
	 introduction to, 41
	 parallel-coupled, 74–87
	 parameters, 41, 43
	 planar, 338–44
	 single-conductor closed, 105–41
	 strip, 61–74
	 theory, 14
	 two-conductor, 45–59
	 with voltage standing wave, 44
Transmission zeros, 10
Triplexers, 2
Two-conductor transmission lines
	 coaxial line, 46–59
	 conductors of equal diameter, 45–46
	 cross section, 46
	 general equation for attenuation, 50–52
	 loss calculation, 51
	 See also Transmission lines
Two-port networks
	 ABCD matrix representation, 36
	 admittance matrix, 20
	 circuit representation, 28
	 doubly terminated, 201
	 with generator, 147
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Two-port networks (continued)
	 illustrated, 27, 194
	 inserted, 29
	 parameters, 11
	 power loss ratio, 193
	 reciprocal, 35
	 in tandem, 36
	 terminated, 146

U

Unbalanced striplines, 64–65
Unidirectional scalar network analyzer, 33
Unit elements (UEs)
cascaded to series short-circuited transmission 

line, 210
	 defined, 210
	 Kuroda’s identity using, 211–12
	 low-pass filter cascaded with, 212
	 low-pass prototype, 217
	 mixture with impedance inverters, 219–29
	 shunt open-circuited transmission line 

cascaded to, 211
Unnormalized ABCD matrix, 38–39

V

Voltage
	 backward, 16
	 defined, 14
	 equivalent, 13–17
Voltage standing wave, 44

W

Waffle-iron filter, 229
WAVEFIL, 224
Waveguide band-pass filters
	 computed frequency response, 315
	 design, 310–14
	 equivalent circuit, 312
	 equivalent network, 314
	 evanescent-mode, 314–19
	 have-wavelength-long cavities, 310
	 input file, 315
	 iris-coupled, 312
	 K-inverter value, 313, 314
	 output file, 315

	 procedure, 311–13
	 typical interface, 316
	 waveguide length, 314
Waveguide band-stop filters
	 characteristic admittance, 259
	 computed response, 262
	 configurations, 257
	 design example, 259–63
	 design steps, 258–63
	 E-plane iris-coupled, 261
	 equation for, 258
	 guided wavelength, 260
	 magnetic polarizabilities, 260
	 optimized response, 263
	 ridged waveguide resonator elements, 258
	 susceptance slope parameters, 259
	 synthesis of, 259
	 See also Band-stop filters
Waveguide directional filter, 395, 396
Waveguide discontinuities, 120–22
	 analysis, 132–33
	 asymmetric step, 123
	 E-plane discontinuities, 135–37
	 finite element modal expansion method, 

133–37
	 H-plane discontinuities, 133–35
	 mode matching method and, 124–32
	 step discontinuity, 121
	 three-dimensional, 137–41
Waveguide folded and elliptic filter
	 12-pole Chebyshev filter, 376
	 basic design, 375
	 cross-coupled filter, 378
	 cross-coupling generation, 375
	 design, 375–79
	 eight-cavity linear phase filter, 379
	 folded Chebyshev filter, 377
	 nonadjacent resonators, 375
	 specifications, 375
Waveguide high-pass filter design, 242–43
Waveguides
	 asymmetric H-plane step, 122–24
	 average power rating of, 117
	 cutoff frequency, 129, 228
	 cutoff wavenumber, 109
	 dielectric loss in, 115–16
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	 double ridge, 138
	 electric and magnetic field components, 109
	 generalized step junction, 129
	 hollow metallic, 105–12
	 iris analysis, 130–32
	 maximum power-handling capability of, 

116–19

	 position for heat transfer relations, 116
	 propagation constant, 109
	 ridge, 137–40
	 TE and TM mode fields, 107, 111
	 See also Circular waveguides; Rectangular 

waveguides
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